0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что лежит в основе диффузии

Диффузия

Диффу́зия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму [1] . В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (по градиенту концентрации).

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы.

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи, однако иногда диффузионными называют также другие процессы переноса: теплопроводность, вязкое трение и т. п.

Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет.

Количественно описание процессов диффузии было дано немецким физиологом А. Фиком (англ.) в 1855 г.

Содержание

Общее описание

Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций, температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10 °C вместо 5 °C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется теплопроводность, в случае потока электрических зарядов — электропроводность. Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню времени диффузии.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий, продиффундировавший через металлический вольфрам при 2000 °C.

Если в смеси газов масса одной молекулы в четыре раза больше другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять субстанции с различными молекулярными весами. В качестве примера можно привести разделение изотопов. Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение 235 U от основной массы 238 U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Уравнения Фика

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии. При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ, обуславливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал перестаёт быть связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J [] пропорциональна коэффициенту диффузии D [()] и градиенту концентрации. Это уравнение выражает первый закон Фика. Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса.

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает стационарное состояние. В этом случае диффузионные процессы описываются нелинейным уравнением Фоккера—Планка. Процессы диффузии имеют большое значение в природе:

  • Питание, дыхание животных и растений;
  • Проникновение кислорода из крови в ткани человека.

Геометрическое описание уравнения Фика

Во втором уравнении Фика в левой части стоит скорость изменения концентрации во времени, а в правой части уравнения — вторая частная производная, которая выражает пространственное распределение концентрации, в частности, выпуклость функции распределения температур, проецируемую на ось х.

ДИФФУЗИЯ

ДИФФУЗИЯ (лат. diffusio распространение, растекание) — процесс самопроизвольного взаимного проникновения соприкасающихся веществ друг в друга за счет теплового движения частиц вещества. Диффузия происходит в направлении падения концентрации вещества и ведет к равномерному распределению веществ по всему занимаемому ими объему. В биологических объектах Диффузия является основным процессом, обеспечивающим направленный поток вещества во время жизнедеятельности организма (поступление газов, воды, минеральных солей и т. д.). У человека в основном за счет Диффузии происходит газообмен в легких и тканях (см. Газообмен), водно-солевой обмен (см.), всасывание продуктов пищеварения в кишечнике (см. Всасывание), генерирование потенциала действия в нервных и мышечных клетках (см. Биоэлектрические потенциалы) и другие процессы жизнедеятельности. Диффузия играет важную роль в химической кинетике и технологических процессах (адсорбции, цементации, диффузионной сварке, диффузионной металлизации и др.).

Читать еще:  Как удалить приложение на Андроиде

Диффузия происходит в газах, жидкостях и твердых телах; диффундировать могут как находящиеся в них посторонние частицы (гетеродиффузия), так и собственные частицы (самодиффузия). Скорость Д. зависит от многих факторов: плотности и вязкости среды, температуры, природы диффундирующих частиц, воздействия разного рода внешних сил и т. д. Наиболее быстро Д. происходит в газах, медленнее в жидкостях и еще медленнее в твердых телах, что определяется характером теплового движения частиц в этих средах.

Для характеристики Д. используют коэффициент диффузии D, равный количеству продиффундировавшего вещества через единицу поверхности за единицу времени при градиенте концентрации, равном единице. Хотя частица движется по ломаной линии и движение происходит случайным образом, средний квадрат смещения (L -2 ) за большое число столкновений растет пропорционально времени (t). Коэффициент пропорциональности D в соотношении L -2

Dt и является коэффициентом Д. Соотношение было выведено Эйнштейном (A. Einstein) и справедливо для Д. в любых средах. Коэффициент Д. обратно пропорционален давлению газа и увеличивается с возрастанием температуры. С увеличением молекулярной массы диффундирующего вещества Д. уменьшается.

Диффузия в газах. Каждая частица газа движется по ломаной траектории, т. к. при столкновении частицы меняют направление и скорость движения. В силу этого скорость поступательного движения гораздо меньше скорости свободного движения молекул (так, скорость распространения запахов намного меньше скорости движения молекул пахучих веществ).

Диффузия в жидкостях рассматривается как движение с трением; для анализа применяют второе соотношение Эйнштейна: D

kut, где k — постоянная Больцмана, численно равная 1,38•10 -16 эрг/град, u — подвижность диффундирующих частиц; при движении сферических частиц u = 1/6 πηr где η — коэффициент вязкости жидкости, r — радиус частиц. Коэффициент Д. жидкости увеличивается при повышении температуры жидкости. В жидких р-рах Д. молекул растворителя через полупроницаемые мембраны приводит к возникновению осмотического давления (см.), что используется в физ.-хим. методах разделения и очистки веществ (см. Гемодиализ, Диализ).

Диффузия в твердых телах осуществляется за счет обмена местами атомов с незанятыми узлами кристаллической решетки (вакансиями), прямого обмена двух соседних атомов, одновременного циклического перемещения нескольких атомов, движения атомов и ионов через междоузлия кристаллической решетки и т. д. Коэффициент Д. в твердых телах в большой степени зависит от дефектов кристаллической структуры, возникающих при нагреве, деформациях, напряжениях и других воздействиях. Так, коэффициент Д. цинка в медь при повышении температуры с 20 до 300° возрастает в 1014 раз.

В полимерах Д. происходит за счет теплового движения молекул полимера или их отдельных участков. На этом свойстве основано явление адгезии (слипание) полимеров. Диффундировать в полимерных материалах могут и частицы посторонних веществ. Так, газопроницаемость полимерных пленок является результатом последовательно протекающих процессов: растворение газа в пограничном слое пленки, Д. растворенного вещества через полимер и выделение молекул газа с другой стороны пленки. Газопроницаемость полимерных материалов зависит от гибкости цепных макромолекул, от физ. состояния полимера, от природы диффундирующих частиц. При кристаллизации, поперечном «сшивании» молекул (вулканизации) с ростом межмолекулярных сил и плотности упаковки газопроницаемость уменьшается.

Д. низкомолекулярных веществ через полимерную пленку осуществляется аналогично. Коллоидные вещества слабо диффундируют, а коллоидные р-ры почти не обнаруживают способности к Д. В то же время Д. низкомолекулярных веществ в коллоидных р-рах низкой концентрации почти не отличается от Д. в чистом растворителе. С увеличением концентрации коллоидного р-ра скорость Д. в нем низкомолекулярных веществ снижается. Д. в гелях зависит от концентрации и природы структурообразующего вещества и от природы и строения частичек диффундирующего вещества.

Единица коэффициента Д. в Международной системе единиц (СИ) — м 2 /сек, единица потока Д. — 1/м 2 •сек или кг/м 2 •сек.

Диффузионный поток. На практике существенное значение имеет не Д. отдельных частиц, а поток вещества, движущийся в сторону меньшей концентрации (диффузионный поток). Диффузионный поток (J) выражается через разность частиц, пересекающих единицу площади в прямом и обратном направлении за единицу времени (закон Фика): j = dm = —DS((C1-C2)/(X1-X2))dt = — DS(dC/dx)dt, где dm — количество частиц вещества, диффундирующих за время dt при градиенте концентрации dC/dx, D — коэффициент диффузии; знак минус указывает, что перемещение происходит в направлении убыли концентрации частиц. Для биол, систем коэффициент Д. заменяют коэффициентом проницаемости P

-D/dx , представляющим собой количество проникающих частиц через единичную площадку мембраны за единицу времени при разности концентраций по обе стороны, равной единице (см. Мембраны биологические, Проницаемость).

Диффузия в биологических системах

Д. играет важную роль в биологич. системах, обеспечивая поступление газов, воды, минеральных веществ в ткани растений и животных. За счет Д. происходят процессы газообмена в легких и тканях, обмена воды и солей в почках, всасывание продуктов пищеварения из кишечника, генерирование потенциала действия в нервных и мышечных клетках, перенос молекул медиатора в синапсах, перемещение веществ внутри клетки и т. д. Расчет диффузионных потоков растворенных веществ через мембраны клеток проводят по уравнению Фика, в к-ром коэффициент Д. заменен на коэффициент проницаемости; по уравнению Фика расчитывают Д. газов и воды, заменяя при этом разность концентраций значениями разности давления газов или осмотического давления по обе стороны мембраны клетки. В большинстве случаев скорость Д. через мембраны меньше скорости свободной Д., что свойственно большинству молекул, имеющих средний размер или заряд, взаимодействующий с заряженной мембраной (большинство анионов)— ограниченная Д. В том случае, когда молекулы и ионы самостоятельно не могут проникать или слабо проникают через биол, мембраны, а при взаимодействии с нек-рыми веществами («переносчиками») их проницаемость увеличивается, говорят об облегченной Д. Такая Д. характерна для ряда сахаров, аминокислот и других органических соединений.

Читать еще:  Когда был последний теракт в Москве

Конечная концентрация молекул или ионов в клетке и окружающей среде мало зависит от скорости их Д. через мембраны. Распределение ионов и молекул между клеткой и средой зависит от их хим. сродства к веществам цитоплазмы, сорбционных процессов, физ. растворения и других процессов, протекающих неодинаково в цитоплазме и окружающей клетку жидкости (см. Клетка). Кроме того, перераспределение ионов зависит от процессов, направленных против концентрационного (электрохимического) градиента и происходящих с затратой энергии — так наз. активный транспорт (см. Транспорт ионов). Поступление биополимеров (белков, нуклеиновых к-т) может происходить за счет механизмов пиноцитоза (см.) и фагоцитоза (см.).

Гиршфельдер Д., Кертисс Ч. и Берд Р. Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Пост X. Физиология клетки, пер. с англ., М., 1975; Никольский H. Н. и Трошин А. С. Транспорт сахаров через клеточные мембраны, Л., 1973, библиогр.; Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике, М., 1967; Ходоров Б. И. Проблема возбудимости, JI., 1969, библиогр.; Шьюмон П. Диффузия в твердых телах, пер. с англ., М., 1966.

Диффузия

I

Диффу́зия (от лат. diffusio — распространение, растекание)

взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Д. происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму (к выравниванию химического потенциала (См. Химический потенциал) вещества).

Д. имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы (Самодиффузия).

Д. крупных частиц, взвешенных в газе или жидкости (например, частиц Дыма или Суспензии), осуществляется благодаря их броуновскому движению (См. Броуновское движение). В дальнейшем, если специально не оговорено, имеется в виду молекулярная Д.

Наиболее быстро Д. происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Неупорядоченность движения приводит к тому, что каждая частица постепенно удаляется от места, где она находилась, причём её смещение по прямой гораздо меньше пути, пройденного по ломаной линии. Поэтому диффузионное проникновение значительно медленнее свободного движения (скорость диффузионного распространения запахов, например, много меньше скорости молекул). Смещение частицы меняется со временем случайным образом, но средний квадрат его `L 2 за большое число столкновений растёт пропорционально времени t. Коэффициент пропорциональности D в соотношении: `L 2

Dt называется коэффициентом Д. Это соотношение, полученное А. Эйнштейном, справедливо для любых процессов Д. Для простейшего случая самодиффузии в газе коэффициент Д. может быть определён из соотношения D

`L 2 /t, применённого к средней длине свободного пробега (См. Длина свободного пробега) молекулы `l. Для газа `l =`сτ, где `с — средняя скорость движения частиц, τ — среднее время между столкновениями. Т. о., D

`l`c (более точно D = 1 /3 `l`c). Коэффициент Д. обратно пропорционален давлению p газа (т.к. `l

1/p); с ростом температуры Т (при постоянном объёме) Д. увеличивается пропорционально Т 1/2 (т.к. `с

Т). С увеличением молекулярной массы коэффициент Д. уменьшается.

В жидкостях, в соответствии с характером теплового движения молекул, Д. осуществляется перескоками молекул из одного временного положения равновесия в другое. Каждый скачок происходит при сообщении молекуле энергии, достаточной для разрыва её связей с соседними молекулами и перехода в окружение др. молекул (в новое энергетически выгодное положение). В среднем скачок не превышает межмолекулярного расстояния. Диффузионное движение частиц в жидкости можно рассматривать как движение с трением, к нему применимо второе соотношение Эйнштейна: D

ukT. Здесь k — Больцмана постоянная, u — подвижность диффундирующих частиц, т. е. коэффициент пропорциональности между скоростью частицы с и движущей силой F при стационарном движении с трением (с = uF). Если частицы сферически симметричны, то u = 1 /6πηr, где η — коэффициент вязкости жидкости, r — радиус частицы (см. Стокса закон).

Коэффициент Д. в жидкости увеличивается с температурой, что обусловлено «разрыхлением» структуры жидкости при нагреве и соответствующим увеличением числа перескоков в единицу времени.

В твёрдом теле могут действовать несколько механизмов Д.: обмен местами атомов с Вакансиями (незанятыми узлами кристаллической решётки), перемещение атомов по междоузлиям, одновременное циклическое перемещение нескольких атомов, прямой обмен местами двух соседних атомов и т.д. Первый механизм преобладает, например, при образовании твёрдых растворов (См. Твёрдые растворы) замещения, второй — твёрдых растворов внедрения.

Коэффициент Д. в твёрдых телах крайне чувствителен к дефектам кристаллической решётки, возникшим при нагреве, напряжениях, деформациях и др. воздействиях. Увеличение числа дефектов (главном образом вакансий) облегчает перемещение атомов в твёрдом теле и приводит к росту коэффициента Д. Для коэффициента Д. в твёрдых телах характерна резкая (экспоненциальная) зависимость от температуры. Так, коэффициент Д. цинка в медь при повышении температуры от 20 до 300°С возрастает в 10 14 раз.

Значение коэффициента диффузии (при атмосферном давлении)

Для большинства научных и практических задач существенно не диффузионное движение отдельных частиц, а происходящее от него выравнивание концентрации вещества в первоначально неоднородной среде. Из мест с высокой концентрацией уходит больше частиц, чем из мест с низкой концентрацией. Через единичную площадку в неоднородной среде проходит за единицу времени безвозвратный поток вещества в сторону меньшей концентрации — диффузионный поток j. Он равен разности между числами частиц, пересекающих площадку в том и др. направлениях, и потому пропорционален градиенту концентрации ∇С (уменьшению концентрации С на единицу длины). Эта зависимость выражается законом Фика (1855):

Читать еще:  Как восстановить навыки вождения после долгого перерыва

Единицами потока j в Международной системе единиц (См. Международная система единиц) являются 1/м 2 ·сек или кг/м 2 ·сек, градиента концентрации — 1/м 4 или кг/м 4 , откуда единицей коэффициента Д. является м 2 /сек. Математически закон Фика аналогичен уравнению теплопроводности (См. Теплопроводность) Фурье. В основе этих явлений лежит единый механизм молекулярного переноса: в 1-м случае переноса массы, во 2-м — энергии (см. Переноса явления).

Д. возникает не только при наличии в среде градиента концентрации (или химического потенциала). Под действием внешнего электрического поля происходит Д. заряженных частиц (электродиффузия), действие поля тяжести или давления вызывает бародиффузию, в неравномерно нагретой среде возникает Термодиффузия.

Все экспериментальные методы определения коэффициента Д. содержат два основных момента: приведение в контакт диффундирующих веществ и анализ состава веществ, изменённого Д. Состав (концентрацию продиффундировавшего вещества) определяют химически, оптически (по изменению показателя преломления или поглощения света), масс-спектроскопически, методом меченых атомов (См. Меченые атомы) и др.

Д. играет важную роль в химической кинетике и технологии. При протекании химической реакции на поверхности катализатора или одного из реагирующих веществ (например, горении угля) Д. может определять скорость подвода др. реагирующих веществ и отвода продуктов реакции, т. е. являться определяющим (лимитирующим) процессом.

Для испарения (См. Испарение) и конденсации (См. Конденсация), растворения кристаллов и кристаллизации (См. Кристаллизация) определяющей оказывается обычно Д. Процесс Д. газов через пористые перегородки или в струю пара используется для изотопов разделения (См. Изотопов разделение). Д. лежит в основе многочисленных технологических процессов — адсорбции (См. Адсорбция), цементации (См. Цементация) и др. (см. Диффузионные процессы); широко применяются Диффузионная сварка, Диффузионная металлизация.

В жидких растворах Д. молекул растворителя через полупроницаемые перегородки (мембраны) приводит к возникновению осмотического давления (см. Осмос), что используется в физико-химическом методе разделения веществ — Диализе.

Д. А. Франк-Каменецкий.

Д. в биологических системах. Д. играет важную роль в процессах жизнедеятельности клеток и тканей животных и растений (например, Д. кислорода из лёгких в кровь и из крови в ткани, всасывание продуктов пищеварения из кишечника, поглощение элементов минерального питания клетками корневых волосков, Д. ионов при генерировании биоэлектрических импульсов нервными и мышечными клетками). Различная скорость Д. ионов через клеточные мембраны — один из физических факторов, влияющих на избирательное накопление элементов в клетках организма. Проникновение растворённого вещества в клетку может быть выражено законом Фика, в котором значение коэффициента Д. заменено коэффициентом проницаемости мембраны, а градиент концентрации — разностью концентраций вещества по обе стороны мембраны. Диффузионное проникновение в клетку газов и воды (см. Осмос) также описывается законом Фика; при этом значения разности концентраций заменяются значениями разности давлений газов и осмотических давлений внутри и вне клетки.

Различают простую Д. — свободное перемещение молекул и ионов в направлении градиента их химического (электрохимического) потенциала (так могут перемещаться лишь вещества с малыми размерами молекул, например вода, метиловый спирт); ограниченную Д., когда мембрана клетки заряжена и ограничивает Д. заряженных частиц даже малого размера (например, слабое проникновение в клетку анионов); облегчённую Д. — перенос молекул и ионов, самостоятельно не проникающих или очень слабо проникающих через мембрану, др. молекулами («переносчиками»); так, по-видимому, проникают в клетку сахара́ и аминокислоты. Через мембрану, вероятно, могут диффундировать и переносчик, и комплекс переносчика с веществом. Перенос вещества, определяемый градиентом концентрации переносчика, называется обменной Д.; такая Д. отчётливо проявляется в экспериментах с изотопными индикаторами. Различную концентрацию веществ в клетке и окружающей её среде нельзя объяснить только Д. их через мембраны за счёт имеющихся электрохимических и осмотических градиентов. На распределение ионов влияют также процессы, которые могут вызывать перераспределение веществ против их электрохимического градиента с затратой энергии, — так называемый Активный транспорт ионов.

Л. Н. Воробьёв, И. А. Воробьёва.

Лит.: Френкель Я. И., Собр. избр. трудов, т. 3 — Кинетическая теория жидкостей, М. — Л., 1959; Гиршфельдер Дж., Кертисс Ч., Берд Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Шьюмон П., Диффузия в твердых телах, пер. с англ., М., 1966; Франк-Каменецкий Д. А., Диффузия и теплопередача в химической кинетике, 2 изд., М., 1967; Булл Г., Физическая биохимия, пер. с англ., М., 1949; Руководство по цитологии, т. 1, М. — Л., 1965; Ходоров Б. И., Проблема возбудимости, Л., 1969.

II

нейтронов, распространение нейтронов в веществе, сопровождающееся многократным изменением направления и скорости движения в результате их столкновений с атомными ядрами. Д. нейтронов аналогична Д. в газах и подчиняется тем же закономерностям (см. Диффузия). Быстрые нейтроны, т. е. нейтроны с энергией, во много раз большей, чем средняя энергия теплового движения частиц среды, при Д. отдают энергию среде и замедляются. В слабо поглощающих средах нейтроны приходят в тепловое равновесие со средой (тепловые нейтроны). В неограниченной среде тепловой нейтрон диффундирует до тех пор, пока не поглотится одним из атомных ядер. Д. тепловых нейтронов характеризуется коэффициентом диффузии D и средним квадратом расстояния от точки образования теплового нейтрона до точки его поглощения, равным L 2 T = 6Dt, где t — среднее время жизни теплового нейтрона в среде.

Для характеристики Д. быстрых нейтронов употребляют средний квадрат расстояния L 2 Б между точкой образования быстрого нейтрона (в ядерной реакции, например реакции деления) и точкой его замедления до тепловой энергии. В табл. приведены для некоторых сред значения L 2 T для тепловых нейтронов и L 2 Б для нейтронов, испускаемых при делении урана.

Значения L 2 T и L 2 Б для некоторых веществ

Источники:

http://dic.academic.ru/dic.nsf/ruwiki/11854
http://xn--90aw5c.xn--c1avg/index.php/%D0%94%D0%98%D0%A4%D0%A4%D0%A3%D0%97%D0%98%D0%AF
http://gufo.me/dict/bse/%D0%94%D0%B8%D1%84%D1%84%D1%83%D0%B7%D0%B8%D1%8F

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector