14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как из углерода получить карбид алюминия

Углерод

Углерод

Углерод – неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец – металлы.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 2 :

  • C – 2s 2 2p 2
  • Si – 3s 2 3p 2
  • Ge – 4s 2 4p 2
  • Sn – 5s 2 5p 2
  • Pb – 6s 2 6p 2

Природные соединения

В природе углерод встречается в виде следующих соединений:

  • Аллотропных модификаций – графит, алмаз, фуллерен
  • MgCO3 – магнезит
  • CaCO3 – кальцит (мел, мрамор)
  • CaCO3*MgCO3 – доломит

Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз – нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.

Химические свойства
  • Реакции с неметаллами

При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.

2С + O2 → (t) 2CO (угарный газ – продукт неполного окисления углерода, образуется при недостатке кислорода)

С + O2 → (t) CO2 (углекислый газ – продукт полного окисления углерода, образуется при достаточном количестве кислорода)

Реакции с металлами

При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.

Ca + C → CaC2 (карбид кальция, СО углерода = -1)

Al + C → Al4C3 (карбид алюминий, СО углерода -4)

Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

Углерод – хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:

Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:

SiO2 + C → (t) Si + CO

Может восстановить и собственный оксид:

Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца – крайне важна в промышленности:

Реакции с кислотами

В реакциях с кислотами углерод проявляет себя как восстановитель:

Оксид углерода II – СO

Оксид углерода II – продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).

В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:

Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.

FeO + CO → Fe + CO2

Образование карбонилов – чрезвычайно токсичных веществ.

Оксид углерода IV – CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.

В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.

В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.

Углекислый газ образуется при горении органических веществ:

    Реакция с водой

В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.

Реакции с основными оксидами и основаниями

В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние – карбонаты (при избытке основания), кислые – гидрокарбонаты (при избытке кислотного оксида).

2KOH + CO2 → K2CO3 + H2O (соотношение основание – кислотный оксид 2:1)

KOH + CO2 → KHCO3 (соотношение основание – кислотный оксид 1:1)

Читать еще:  Как разыграть маму на 1 апреля

При нагревании способен окислять металлы до их оксидов.

Zn + CO2 → (t) ZnO + CO

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается “закипанием” – появлением пузырьков бесцветного газа без запаха.

Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа – помутнение исчезало.

Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.

Чтобы сделать из средней соли (карбоната) – кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 – ошибка. Ее следует записать в виде воды и углекислого газа.

Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)

Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.

Нагревание солей угольной кислоты

При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты – на соответствующий оксид металла, углекислый газ и воду.

©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Карбид алюминия, характеристика, свойства и получение, химические реакции

Карбид алюминия, характеристика, свойства и получение, химические реакции.

Карбид алюминия – неорганическое вещество, имеет химическую формулу Al4C3.

Краткая характеристика карбида алюминия:

Карбид алюминия – неорганическое вещество желтовато-коричневого цвета, соединение алюминия и углерода.

Карбид алюминия представляет собой желтовато-коричневатые кристаллы.

Химическая формула карбида алюминия Al4C3.

Карбид алюминия имеет необычную кристаллическую структуру, которая состоит из чередующихся слоев Al2C и Al2C2.

Соединение является очень устойчивым к воздействию внешней среды. Оно имеет высокую температуру плавления – 2100 о С.

Не растворяется в воде , а вступает с ней в реакцию, разлагаясь на гидроксид алюминия и метан.

Не растворим в ацетоне.

Растворяется в расплавленном алюминии, снижая склонность алюминия к ползучести.

Карбид алюминия имеет приблизительно такую же твердость как у топаза.

Физические свойства карбида алюминия:

Получение карбида алюминия:

Карбид алюминия получается в результате следующих химических реакций:

  1. 1. взаимодействия алюминия и углерода:

4Al + 3C → Al4C3 (t = 1500-1700 о С).

Реакция протекает путем сплавления алюминия с углеродом в дуговой печи .

  1. 2. взаимодействия оксида алюминия и углерода:
  1. 3. взаимодействия карбида кремния с углеродом:

Небольшие количества карбида алюминия также образуются в качестве примеси при получении технического карбида кальция. Кроме того, при электролитическом производстве алюминия карбид алюминия образуется как продукт коррозии графитовых электродов.

Химические свойства карбида алюминия. Химические реакции карбида алюминия:

Химические свойства карбида алюминия аналогичны свойствам карбидов других металлов . Поэтому для него характерны следующие химические реакции:

1. реакция карбида алюминия и водорода:

В результате реакции образуются алюминий и метан.

2. реакция карбида алюминия и кислорода:

В результате реакции образуются оксид алюминия и оксид углерода (IV).

3. реакция карбида алюминия и хлора:

В результате реакции образуются хлорид алюминия и хлорид углерода (IV) (тетрахлорметан).

4. реакция карбида алюминия, гидроксида натрия и воды:

В результате реакции образуются тетрагидроксоалюминат натрия и метан.

5. реакция карбида алюминия и азотной кислоты:

В результате реакции образуются нитрат алюминия и метан .

Аналогичные реакции карбида алюминия происходят и с другими кислотами.

6. реакция разложения карбида алюминия (реакция карбида алюминия и воды):

В результате реакции разложения карбида алюминия (реакции карбида алюминия и воды) образуются гидроксид алюминия и метан. Данная реакция представляет собой лабораторный способ получения метана.

Читать еще:  Кто такие миллениалы

7. реакция термического разложения карбида алюминия:

Al4C3 → 4Al + 3C (t > 2200 о С).

В результате реакции термического разложения карбида алюминия образуются алюминий и углерод .

Применение и использование карбида алюминия:

Карбид алюминия используется лишь в нескольких отраслях:

– в качестве абразива в режущих инструментах ,

– в качестве добавки при производстве алюминия и алюминиевых сплавов (в целях снижения ползучести алюминия ).

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карбид алюминия реагирует кислота 1 2 3 4 5 вода соль гидролиз цинка
уравнение реакций соединения масса взаимодействие масса карбида алюминия
реакции

Поиск технологий

Найдено технологий 1

Может быть интересно:

Вертикально-осевые ветротурбины

Левитация

Оборудование для производства комбикорма – установки “БКУ-Универсал”

Гидрат природного газа – “горючий лед” – новый вид газового топлива

Передача мыслей между людьми на расстоянии

Переработка углекислого газа

Восстановление костной ткани

Нанокомпозит на основе древесины

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Углерод

Углерод

Углерод – неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец – металлы.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 2 :

  • C – 2s 2 2p 2
  • Si – 3s 2 3p 2
  • Ge – 4s 2 4p 2
  • Sn – 5s 2 5p 2
  • Pb – 6s 2 6p 2

Природные соединения

В природе углерод встречается в виде следующих соединений:

  • Аллотропных модификаций – графит, алмаз, фуллерен
  • MgCO3 – магнезит
  • CaCO3 – кальцит (мел, мрамор)
  • CaCO3*MgCO3 – доломит

Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз – нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.

Химические свойства
  • Реакции с неметаллами

При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.

2С + O2 → (t) 2CO (угарный газ – продукт неполного окисления углерода, образуется при недостатке кислорода)

С + O2 → (t) CO2 (углекислый газ – продукт полного окисления углерода, образуется при достаточном количестве кислорода)

Реакции с металлами

При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.

Ca + C → CaC2 (карбид кальция, СО углерода = -1)

Al + C → Al4C3 (карбид алюминий, СО углерода -4)

Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

Читать еще:  Как выбрать футбольный мяч

Углерод – хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:

Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:

SiO2 + C → (t) Si + CO

Может восстановить и собственный оксид:

Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца – крайне важна в промышленности:

Реакции с кислотами

В реакциях с кислотами углерод проявляет себя как восстановитель:

Оксид углерода II – СO

Оксид углерода II – продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).

В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:

Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.

FeO + CO → Fe + CO2

Образование карбонилов – чрезвычайно токсичных веществ.

Оксид углерода IV – CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.

В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.

В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.

Углекислый газ образуется при горении органических веществ:

    Реакция с водой

В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.

Реакции с основными оксидами и основаниями

В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние – карбонаты (при избытке основания), кислые – гидрокарбонаты (при избытке кислотного оксида).

2KOH + CO2 → K2CO3 + H2O (соотношение основание – кислотный оксид 2:1)

KOH + CO2 → KHCO3 (соотношение основание – кислотный оксид 1:1)

При нагревании способен окислять металлы до их оксидов.

Zn + CO2 → (t) ZnO + CO

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается “закипанием” – появлением пузырьков бесцветного газа без запаха.

Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа – помутнение исчезало.

Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.

Чтобы сделать из средней соли (карбоната) – кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 – ошибка. Ее следует записать в виде воды и углекислого газа.

Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)

Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.

Нагревание солей угольной кислоты

При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты – на соответствующий оксид металла, углекислый газ и воду.

©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источники:

http://studarium.ru/article/166
http://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/karbid-alyuminiya-harakteristika-svoystva-i-poluchenie-himicheskie-reaktsii/
http://studarium.ru/article/166

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: