0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как преобразовать солнечную энергию в электрическую

Как происходит процесс преобразования солнечной энергии в электрическую

Многие из нас так или иначе сталкивались с солнечными элементами. Кто-то пользовался или пользуется солнечными батареями для получения электричества в бытовых целях, кто-то использует небольшую солнечную панель для зарядки любимого гаджета в полевых условиях, а кто-то уж точно видел маленький солнечный элемент на микрокалькуляторе. Некоторым даже посчастливилось побывать на солнечной электростанции.

Но задумывались ли вы когда-нибудь о том, как происходит процесс преобразования солнечной энергии в энергию электрическую? Какое физическое явление лежит в основе работы всех этих солнечных элементов? Давайте обратимся к физике и разберемся в процессе генерации детально.

С самого начала очевидно, что источником энергии здесь является солнечный свет, или, выражаясь научным языком, электрическая энергия получается благодаря фотонам солнечного излучения. Эти фотоны можно представить себе как непрерывно движущийся от Солнца поток элементарных частиц, каждая из которых обладает энергией, и следовательно весь световой поток несет в себе какую-то энергию.

С каждого квадратного метра поверхности Солнца непрерывно излучается по 63 МВт энергии в форме излучения! Максимальная интенсивность этого излучения приходится на диапазон видимого спектра — волны с длиной от 400 до 800 нм.

Так вот, ученые определили, что плотность энергии потока солнечного света на расстоянии от Солнца до Земли в 149600000 километров, после его прохождения через атмосферу, и по достижении поверхности нашей планеты, составляет в среднем приблизительно 900 Вт на квадратный метр.

Здесь эту энергию можно принять и попытаться получить из нее электричество, то есть преобразовать энергию светового потока Солнца — в энергию движущихся заряженных частиц, проще говоря — в электрический ток.

Для преобразования света в электричество нам потребуется фотоэлектрический преобразователь . Такие преобразователи очень распространены, они встречаются в свободной продаже, это так называемые солнечные ячейки — фотоэлектрические преобразователи в виде вырезанных из кремния пластин.

Лучшие — монокристаллические, они обладают КПД порядка 18%, то есть если поток фотонов от солнца обладает плотностью энергии в 900 Вт/кв.м, то можно рассчитывать на получение 160 Вт электричества с квадратного метра батареи, собранной из таких ячеек.

Работает здесь явление, называемое «фотоэффектом». Фотоэффект или фотоэлектрический эффект — это явление испускания электронов веществом (явление вырывания электронов из атомов вещества) под действием света или любого другого электромагнитного излучения.

Еще в 1900 году Макс Планк, отец квантовой физики, выдвинул предположение, что свет излучается и поглощается отдельными порциями или квантами, которые позже, а именно в 1926 году, химик Гилберт Льюис назовет «фотонами».

Каждый фотон обладает энергией, которая может быть определена по формуле Е = hv — постоянная Планка умножить на частоту излучения.

В соответствии с идеей Макса Планка стало объяснимым явление, открытое в 1887 году Герцем, и исследованное затем досконально с 1888 по 1890 год Столетовым. Александр Столетов экспериментально изучил фотоэффект и установил три закона фотоэффекта (законы Столетова):

При неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещённости катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения).

Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.

Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.

Позже, в 1905 году, теорию фотоэффекта прояснит Эйнштейн. Он покажет, как квантовая теория света и закон сохранения и превращения энергии превосходно объясняют происходящее и наблюдаемое. Эйнштейн запишет уравнение фотоэффекта, за которое в 1921 году получит Нобелевскую премию:

Работы выхода А здесь — это минимальная работа, которую необходимо совершить электрону чтобы покинуть атом вещества. Второе слагаемое — кинетическая энергия электрона после выхода.

То есть фотон поглощается электроном атома, благодаря чему кинетическая энергия электрона в атоме возрастает на величину энергии поглощенного фотона.

Часть этой энергии расходуется на выход электрона из атома, электрон выходит из атома и получает возможность свободно двигаться. А направленно движущиеся электроны — это ничто иное, как электрический ток или фототок. В итоге можно говорить о возникновении ЭДС в веществе в результате фотоэффекта.

Стало быть, солнечная батарея работает благодаря действующему в ней фотоэффекту. Но куда движутся «выбитые» электроны в фотоэлектрическом преобразователе? Фотоэлектрический преобразователь или солнечная ячейка или фотоэлемент — это полупроводник, следовательно фотоэффект в нем происходит необычно, это внутренний фотоэффект, и он имеет даже специальное название «вентильный фотоэффект».

Под действием солнечного света в p-n переходе полупроводника возникает фотоэффект и появляется ЭДС, но электроны не покидают фотоэлемент, все происходит в запирающем слое, когда электроны покидают одну часть тела, переходя в другую его часть.

Кремния в земной коре 30% от ее массы, поэтому его всюду и используют. Особенность полупроводников вообще заключается в том, что они и не проводники и не диэлектрики, их проводимость зависит от концентрации примесей, от температуры и от воздействия излучений.

Ширина запрещенной зоны в полупроводнике составляет несколько электрон-вольт, и это как раз разность энергий между верхним уровнем валентной зоны атомов, откуда вырываются электроны, и нижним уровнем зоны проводимости. У кремния запрещенная зона имеет ширину 1,12 эВ — как раз то что нужно для поглощения солнечного излучения.

Итак, p-n переход. Легированные слои кремния в фотоэлементе образуют p-n переход. Здесь получается энергетический барьер для электронов, они покидают валентную зону и движутся только в одном направлении, в противоположном направлении движутся дырки. Так и получается ток в солнечном элементе, то есть имеет место генерация электроэнергии из солнечного света.

Читать еще:  Чехов начинал свой творческий путь как

P-n переход, подвергаемый действию фотонов, не позволяет носителям заряда — электронам и дыркам — двигаться иначе, чем только в одном направлении, они разделяются и оказываются по разные стороны от барьера. И будучи присоединен к цепи нагрузки посредством верхнего и нижнего электродов, фотоэлектрический преобразователь, подвергаемый действию солнечного света, создаст во внешней цепи постоянный электрический ток.

Принцип преобразования солнечной энергии в электричество

Солнце и фотоэлектрические модули (СФЭМ — солнечные батареи).

В основе этого способа получения электричества лежит солнечный свет, названный в учебниках как солнечное излучение, солнечная радиация, световой поток или поток элементарных частиц – Фотонов. Для нас он интересен тем, что, так же как и движущийся воздушный поток, световой поток обладает энергией! На расстоянии в одну астрономическую единицу (149 597 870,66 км) от Солнца, на котором и располагается наша Земля, плотность потока солнечного излучения составляет 1360 Вт/м 2 . А пройдя через земную атмосферу, поток теряет свою интенсивность из-за отражения и поглощения, и у поверхности Земли уже равен

1000 Вт/м 2 . Здесь и начинается наша работа: использовать энергию светового потока и преобразовать её в необходимую нам в быту энергию – электрическую.

Таинство этого преобразования происходит на небольшом псевдоквадрате со скошенными углами, который вырезан из кремниевого цилиндра (рис. 2), диаметром 125 мм, и имя ему — фотоэлектрический преобразователь (ФЭП). Каким же образом?

Ответ на этот вопрос получили физики, открывшие такое явление как Фотоэффект. Фотоэффект — это явление вырывания электронов из атомов вещества под воздействием света.

В 1900г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями — квантами (или фотонами). Энергия каждого фотона определяется формулой: Е = hν(аш ню), где h — постоянная Планка, равная 6,626 × 10 -34 Дж∙с, ν — частота фотона. Гипотеза Планка объяснила явление фотоэффекта, открытого в 1887 г. немецким ученым Генрихом Герцем и изученного экспериментально русским ученым Александром Григорьевичем Столетовым, который, путем обобщения полученных результатов, установил следующие три закона фотоэффекта:

  1. При неизменном спектральном составе света сила тока насыщения прямо пропорциональна падающему на катод световому потоку.
  2. Начальная кинетическая энергия вырванных светом электронов линейно растет с ростом частоты света и не зависит от его интенсивности.
  3. Фотоэффект не возникает, если частота света меньше некоторой, характерной для каждого вещества, величины, называемой красной границей.

Теорию фотоэффекта, проясняющую таинство, царящее в ФЭПе, развил немецкий ученый Альберт Эйнштейн в 1905г., объяснив законы фотоэффекта с помощью квантовой теории света. Исходя из закона сохранения и превращения энергии, Эйнштейн записал уравнение для энергетического баланса при фотоэффекте:

где: hν – энергия фотона, А – работа выхода – минимальная работа, которую нужно совершить для выхода электрона из атома вещества. Таким образом, получается, что частица света – фотон — поглощается электроном, который приобретает дополнительную кинетическую энергию ½m∙v 2 и совершает работу выхода из атома, что дает ему возможность свободно двигаться. А направленное движение электрических зарядов и есть электрический ток, или, правильнее говоря, в веществе возникает Электро Движущая Сила – Э.Д.С.

За уравнение для фотоэффекта в 1921 году Эйнштейну была присуждена Нобелевская премия.

Возвращаясь из прошлого в наши дни, мы видим, что «сердцем» Солнечной батареи является ФЭП (полупроводниковый фотоэлемент), в котором осуществляется удивительное чудо природы – Вентильный фотоэффект (ВФЭ). Он заключается в возникновении электродвижущей силы в p-n переходе под действием света. ВФЭ, или фотоэффект в запирающем слое, — явление, при котором электроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник).

Полупроводники — это материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт [эВ]. Ширина запрещенной зоны — это разность энергий электронов в кристалле полупроводника между нижним уровнем зоны проводимости и верхним уровнем валентной зоны полупроводника.

К числу полупроводников относятся многие химические элементы: германий, кремний, селен, теллур, мышьяк и другие, огромное количество сплавов и химических соединений (арсенид галлия и др.) Самым распространённым в природе полупроводником является кремний, составляющий около 30 % земной коры.

Кремнию суждено было стать материалом для солнечной энергетики благодаря его широкому распространению в природе, легкость, подходящая ширина «запрещенной зоны» 1,12 эВ для поглощения энергии солнечного света. Сегодня на рынке коммерческих систем наземного применения наиболее заметны кристаллические кремниевые (около 90% мирового рынка) и тонкопленочные солнечные элементы (около 10% рынка).

Ключевым элементом конструкции кристаллических кремниевых фотоэлектрических преобразователей (ФЭП) является p-n переход. В упрощенном виде ФЭП можно представить в виде «бутерброда»: он состоит из слоев кремния, легированных для получения p-n перехода.

Одним из главных свойств p-n перехода является его способность быть энергетическим барьером для носителей тока, то есть пропускать их только в одном направлении. Именно на этом эффекте и базируется генерация электрического тока в солнечных элементах. Излучение, попадающее на поверхность элемента, генерирует в объеме полупроводника носители заряда с разным знаком — электроны (n) и дырки (p). Благодаря своим свойствам p-n переход «разделяет» их, пропуская каждый тип только на «свою» половину, и хаотически двигающиеся в объеме элемента носители заряда оказываются по разные стороны барьера, после чего могут быть переданы во внешнюю цепь для создания напряжения на нагрузке и электрического тока в замкнутой цепи, подключенной к солнечному элементу.

Фотовольтаика: солнечная электроэнергия

Как преобразовывать солнечную энергию в электрический ток? Можно ли ездить на солнечном электричестве? Рассказываем о том, что позволяет солнечная энергетика сегодня.

Читать еще:  Можно ли замораживать дрожжи

Более тридцати лет я занимаюсь разработкой новых материалов и приборов для преобразования света в электричество, последние двадцать лет — в Национальном центре солнечной энергии в Университете Бен-Гуриона в Израиле. При этом основная часть моих научных интересов находится в области прямого преобразования с помощью полупроводниковых солнечных батарей, или так называемых фотоэлектрических модулей (photovoltaics). В таких приборах слой полупроводника поглощает свет, в результате чего рождаются свободные электронно-дырочные пары и разделяются, если есть встроенное электрическое поле. Таким образом можно генерировать электрический ток, только в данном случае не переменный, а постоянный. И поскольку мы используем преимущественно переменный ток и в промышленности, и в быту, то ставится дополнительный прибор — инвертор, который преобразует переменный ток в постоянный.


Термосолнечная электростанция башенного типа в пустыне Негев в Израиле. Множество плоских зеркал вокруг башни (каждое из которых управляется по своей программе) концентрируют солнечный свет на приемник на вершине башни высотой 260 метров. Снимок сделан в момент, когда еще не все зеркала настроены на фокус-приемник. Поэтому виден второй фокус рядом с башней. Частицы влаги в воздухе испаряются, делая видимым конус концентрированного света

Альтернативой такому подходу может служить последовательное преобразование солнечного света сначала в тепло, а затем в электричество (thermo-solar generation). Концентрируемый до высокой интенсивности свет (с помощью так называемых солнечных концентраторов — зеркал или линз особой конструкции) испаряет жидкость, например воду. Полученный таким образом пар вращает турбину и создает переменный ток. Последний этап такого преобразования качественно не отличается от того, как работают электрогенераторы на обычных электростанциях, сжигающих для этого топливо (уголь, газ, нефтепродукты).

Сегодня фотовольтаика имеет гораздо более высокий КПД, что обеспечивает меньшую стоимость солнечного электричества (по сравнению с последовательной термосолнечной генерацией). Однако у этого способа есть недостаток: пока не разработаны способы эффективно и дешево запасать электричество в промышленных масштабах. У термосолнечных систем эффективность меньше, но зато есть возможность запасать полученное тепло в течение ночи. Последние несколько лет мы пытаемся разработать гибридную систему (photovoltaic-thermosolar), совмещающую высокий КПД фотоэлектрических панелей и возможность запасать тепло в гелиотермальной части такой системы. Сделать это не так просто, потому как эффективная работа термосолнечных систем требует нагрева пара до высоких температур — как минимум 300-400 °C. В то же время КПД большинства фотоэлектрических модулей падает с ростом температуры. Однако мы выяснили, что негативный температурный коэффициент КПД фотоэлектрических элементов падает с увеличением интенсивности света. Существует стандарт интенсивности доходящего до поверхности Земли солнечного излучения — одно «солнце». Это 1000 Вт/м2. Так вот, если мы концентрируем свет до тысячи солнц, то фотоэлектрические приборы становятся достаточно толерантны к увеличению температуры. Таким образом мы можем сделать высокоэффективный гибридный прибор с фотоэлектрической панелью. Свет, который не поглощен в ней, будет проходить дальше, приниматься нагревателем воды и создавать пар. При этом будет возможность запаса энергии.


Схема гибридной фотоэлектрическо-термосолнечной установки. Концентрированный свет фокусируется на поверхности высокоэффективного солнечного элемента, прямо под которым размещается гелиотермальный приемник

Гибридные установки

Электростанции, использующие одновременно солнечную энергию и энергию ветра, сегодня достаточно распространены. Но это не совсем гибрид. Дело в том, что ветровые установки нельзя поставить близко друг к другу: они просто не будут работать. Таким образом большое количество площади остается неиспользованным. Ее можно занять фотоэлектрическими батареями. С точки зрения использования площади такая станция может называться гибридом, но нужно понимать, что это два типа независимо работающих приборов.


Гибридная солнечно-ветровая электростанция

Разновидности фотоэлектрических устройств

Прямое преобразование энергии можно осуществлять разными способами — например, с помощью плоских солнечных батарей большой площади (flat panels), зафиксированных на поверхности земли, крышах домов и так далее. А можно собирать свет не фотоэлектрическими панелями, а уже упомянутыми солнечными концентраторами (solar concentrators) — зеркалами или линзами. Таким образом резко усиливается интенсивность света и уменьшается площадь дорогостоящих полупроводниковых преобразователей. Это так называемая концентраторная фотовольтаика (concentrator photovoltaics, CPV). Сегодня этот способ проигрывает из-за того, что стоимость плоских панелей на основе кристаллического кремния резко уменьшилась за последние несколько лет. И если говорить о масштабном производстве электроэнергии, то, безусловно, в выигрыше способ, преобразующий энергию за счет кремниевых батарей, которые лежат на крыше, в поле или где-то еще. Эта тенденция сохранится, видимо, и в ближайшем будущем.

Продолжаются попытки производить солнечные батареи не из дорогостоящих неорганических полупроводников, таких как кремний или арсенид галлия, а из чего-то совсем дешевого, например из органических материалов (проводящих полимеров, фуллеренов и тому подобного). Действительно, чтобы сделать солнечный кремниевый элемент, нужно получить очень чистый кремний, после чего вырастить дорогостоящий кристалл. Температура плавления и кристаллизации кремния — 1400 °C, то есть необходимо также потратить много энергии на нагревание. Полученный кристалл затем режется на пластины, из которых изготавливаются приборы, в то время как органический солнечный элемент можно просто напечатать на принтере при комнатной температуре. Несложно понять, что для этого требуется гораздо меньше энергии. Более того, органические солнечные элементы легко гнутся и принимают любую необходимую форму. Однако главным тормозом такого направления является то, что эти приборы очень нестабильны. Под действием света, воздуха и температуры их эффективность сильно падает. Для сравнения: кремниевые солнечные элементы сегодня имеют срок службы более 20 лет. Сейчас производство электричества с помощью кремниевых полупроводниковых солнечных батарей — это не мечта, а реальность на уровне производства терраватт электрической мощности с КПД порядка 20%.

Кремниевое направление победило за счет стабильности и высоких КПД. Рекордные значения КПД кремниевых солнечных элементов превышают 26% и практически подошли к теоретическому пределу. Что же дальше?

Читать еще:  Как часто можно красить волосы

Солнечные элементы на основе перовскитов

Недавно было открыто семейство новых гибридных органическо-неорганических полупроводников на основе металл-галогенных перовскитов, а затем появились солнечные элементы на их основе. Так же, как и органические солнечные элементы, они могут быть получены из растворов, то есть напечатаны на принтере — в перспективе. При этом такие приборы уже сегодня демонстрируют гораздо более высокую эффективность, чем «органика». Первые солнечные элементы на основе перовскита, полученные в группе японского профессора Цутому Миясака (Tsutomu Miyasaka) в 2009 году, имели КПД меньше 4%, а сегодня он достиг 24%.

Перовскитные приборы можно также совместить с кремниевыми. У каждого полупроводникового материала есть так называемая ширина запрещенной зоны. Фотоны поглощаются только с энергией, которая больше этой ширины запрещенной зоны. Скажем, у кремния ширина запрещенной зоны — 1,1 эВ (электронвольт). Это означает, что кремниевые элементы поглощают только часть солнечного спектра, что ограничивает КПД. Кремниевый солнечный элемент активен в инфракрасной области спектра, а перовскитный — в ультрафиолетовой. Сегодня задача сотен, а может быть, и тысяч лабораторий по всему миру — создать так называемые тандемные (tandem) кремниево-перовскитные солнечные элементы, эффективно поглощающие солнечный свет в широком спектральном диапазоне. Если эта задача будет выполнена, реальны значения КПД преобразования в промышленном масштабе, превышающие 30%.

Главный недостаток этого материала в том, что он крайне нестабилен и быстро начинает деградировать. Чтобы разрешить данную проблему, нужно понять, почему происходит деградация. Один из механизмов нестабильности таких структур связан с ионным характером химических связей в этих материалах. Такую структуру достаточно легко разрушить — светом, теплом, взаимодействием с водой или кислородом воздуха.

С другой стороны, среди исследователей пока даже нет согласия, как количественно оценивать деградацию и стабильность таких приборов.

На мой взгляд, именно работы именно в этом направлении могут привести к революции в широкомасштабном производстве солнечного электричества. Если, конечно, они увенчаются успехом.

Солнечная энергия для транспорта

У солнечного излучения есть несколько недостатков с точки зрения его преобразования в электричество. На Землю падает свет достаточно малой мощности — как уже упоминалось, всего 1000 Вт/м2. Грубо говоря, если КПД солнечной батареи — 20%, то с квадратного метра такой панели можно произвести всего лишь 200 Вт. Вырабатываемая мощность прямо пропорциональна площади. Поэтому, скажем, делать автомобили или самолеты на солнечных элементах достаточно тяжело. Мощности, полученной от панелей, не хватит на нормальную работу двигателей. Такие машины должны обладать непомерно большими крыльями, чтобы собирать необходимое количество света.

Поскольку мы пришли к тому, что площади самолета или машины недостаточно для их функционирования, то возникает потребность производства топлива с помощью энергии солнца (solar fuels). Исследования в этом направлении, безусловно, перспективны. В то же время сейчас есть большой интерес к электромобилям. Мы не хотим, чтобы машины сжигали бензин и производили CO2, поскольку это вредно с точки зрения экологии. Стоит, однако, задуматься, откуда мы возьмем столько электроэнергии, чтобы подзаряжать батареи, если все машины будут ездить на электродвигателях. Для этого нужно построить новые станции и сжигать больше угля, газа, нефти. Поэтому, безусловно, широкомасштабное внедрение электромобилей должно идти нога в ногу с расширением солнечной энергетики.

О транспортировке энергии

У южных стран больше солнечной радиации, а у северных — меньше. Но при этом все-таки разделение солнечного излучения на Земле гораздо более демократично, чем разделение, например, источников углеводородов. Могу поделиться интересным примером международного сотрудничества в этой области. С 2012 года я являюсь членом Международного экспертного совета при Национальной комиссии по науке и технологическому развитию Чили (Panel of experts for National Commission of Scientific and Technological Research in Chile, CONICYT). На севере Чили есть высокогорная пустыня Атакама, где уровень солнечной радиации один из самых высоких на нашей планете. При этом там производят медь, которая является одним из главных экономических источников страны, а население живет чрезвычайно бедно: еще недавно там практически не было чистой воды. И они стали внедрять солнечное фотоэлектричество, стали мировым лидером по скорости внедрения таких систем. В определенный момент чилийцы достигли перепроизводства электроэнергии. Тогда появилась идея продавать ее за границу. Наиболее удобны в этом отношении соседние Аргентина и Перу. Но с Аргентиной у них есть политические разногласия, исторические обиды друг на друга, а в Перу, оказывается, самое дешевое производство электричества. Тогда была реализована интересная идея: чилийцы днем продают солнечное электричество в Перу, а ночью покупают дешевую перуанскую электроэнергию.

Если когда-нибудь будут открыты высокотемпературные сверхпроводники, эффективно функционирующие при комнатной температуре, то можно будет передавать электроэнергию без потерь. Пока же транспортировка электричества на большие расстояния ограничена. Одно из возможных технологических решений связано с вышеупомянутой возможностью запаса и транспортировки солнечного топлива, например водорода, получаемого электролизом или фотоэлектролизом воды. В последнем случае мы приближаемся к возможности искусственного фотосинтеза (artificial photosynthesis).

Существует также идея создать на геостационарных орбитах солнечную станцию и производить солнечное электричество в космосе. Чем это хорошо? Во-первых, мощность солнечного света там на 30% больше, чем на Земле, потому как немалое количество солнечного света поглощается нашей атмосферой. Во-вторых, там постоянный по времени спектр солнечного света. Электричество, произведенное в космосе с помощью фотоэлектрических батарей, может питать, например, лазер или генератор микроволнового излучения, которые будут посылать монохроматический свет или микроволновое излучение в любую точку Земли. Здесь, на Земле, их будут принимать солнечные батареи или антенны для преобразования микроволнового излучения. КПД преобразования монохроматического света может быть чрезвычайно высоким — до 80%. Такие проекты хотя и продолжают финансироваться рядом государственных космических агентств и частных компаний, но до сих пор остаются скорее в области фантастики — прежде всего из-за высокой стоимости транспортировки грузов на орбиту.

Источники:

http://electricalschool.info/spravochnik/poleznoe/1914-kak-proiskhodit-process-preobrazovanija.html
http://www.solarroof.ru/theory/28/104/
http://www.energovector.com/energoznanie-fotovoltaika-solnechnaya-elektroenergiya.html

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector
×
×
×
×