0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать коэффициент теплопроводности

Теплопроводность строительных материалов

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Читать еще:  Какое событие можно назвать началом смуты

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Коэффициент теплопроводности строительных материалов — что это такое таблица значений

Опубликовано Артём в 13.04.2019 13.04.2019

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напрямую зависит от коэффициента теплопроводности строительных материалов.

Теплопроводность: понятие и теория

Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Читать еще:  Где учиться на SMM специалиста

Потери тепла на разных участках постройки будут отличаться

Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

Как рассчитать теплоизоляцию?

Эта статья поможет вам самостоятельно выяснить, какие потери тепла вы несете. Для этого необходимо знать четыре основные термина. С первого взгляда они означают одно и то же, поэтому и надо рассмотреть их внимательнее.

Читать еще:  Что делать если кошку укусил клещ

Коэффициент теплопередачи

Коэффициент теплопередачи показывает, как хорошо элемент конструкции (крыша, стена, пол) проводит тепло. Чем ниже этот показатель, тем хуже пропускается тепло и тем лучше теплоизоляция.

Определение коэффициента теплопередачи звучит следующим образом: потеря энергии квадратным метром поверхности при разности температур внешней и внутренней. Это определение влечет за собой взаимосвязь ватт, квадратных метров и Кельвина W /( m 2 · K ).

Кельвин – это единица температуры. 0 Кельвинов – минимально возможное значение температуры. При разности температур значения Кельвина совпадают с градусами по Цельсию. Следующий пример с неизолированной стеной в старой постройке показывает значение коэффициента теплопередачи. В начале 20 века внешние стены дома строили из полнотелого кирпича толщиной 24 см, с двух сторон стена покрывалась штукатуркой толщиной 1,5 см. коэффициент теплопередачи такой стены примерно составляет 2 W /( m 2 · K ).

При разности температур в 1Кельвин (например 21 градус внутри помещения и 20 снаружи) потеря энергии составляет 2 Ватта за квадратный метр. Стена площадью 30 метров квадратных (12*2,5) теряет примерно 60 Ватт.

При понижении внешней температуры соответственно увеличивается потеря энергии. При внешней температуре 0, разница составит 21 градус, а потеря тепла 21 K ельвин x 60 Ватт/ K ельвин = 1260 Ватт или 1,26 кВатт. За 24 часа получается 24ч х 1,26 кВатт=30 кВатт/сут., что соответствует расходу топлива объемом 3 литра.

Коэффициент теплопередачи – это предпочтительный способ сравнения конструкций с энергетической точки зрения.

Теплопроводность лямбда λ

Теплопроводность – это свойство материала. Она показывает, насколько хорошо материал проводит тепло и не зависит от его плотности. Теплопроводность подходит для сравнения различных изоляционных материалов, но не для архитектурных конструкций. Теплопроводность – это тепловой ток (Ватт) на разность температур на площадь поперечного сечения умножить на толщину материала. Чем больше толщина материала, тем меньше теплового тока (и наоборот: чем больше площадь поперечного сечения, тем больше теплового тока). Теплопроводность считается по формуле W /( m · K ). Но это не означает «Ватт разделить на метр, умноженный на Кельвин». А «Ватт, разделить на метр квадратный(поперечное сечение)умножить на метр (толщина материала) разделить на Кельвин»

Если разделить теплопроводность на толщину материала, то получится коэффициент пропуска тепла с единицей измерения тепловой ток(Ватт) на квадратный метр поверхности и на Кельвин. Эта формула совпадает с коэффициентом теплопередачи, но значения этих понятий различны. Коэффициент теплопередачи учитывает термическое сопротивление воздуха в помещении на стену, также как внешнего воздуха на внешнюю стену. В расчетах коэффициента теплопередачи расчет ведется исходя из разницы в температуре воздуха, а в коэффициенте пропуска тепла – в температуре материалов.

Сопротивление пропуску тепла R

Сопротивление пропуску тепла является обратной величиной коэффициенту пропуска тепла R = d /λ. D при этом толщина слоя. Сопротивление пропуску тепла описывает, как определенный материал не пропускает тепло. Чем выше сопротивление пропуску тепла, тем лучше теплоизоляция. Единица измерения m 2 K / W .

Источники:

http://stroyday.ru/stroitelstvo-doma/yteplenie-doma/teploprovodnost-stroitelnyx-materialov.html
http://kachestvolife.club/otoplenie/koefficienty-teploprovodnosti-stroitel-nyh-materialov-v-tablicah
http://www.ppu21.ru/article/535.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector