Как вычислить корни квадратного уравнения
Как решать
квадратные уравнения
В предыдущих уроках мы разбирали «Как решать линейные уравнения», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.
Что называют квадратным уравнением
Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.
Если максимальная степень, в которой стоит неизвестное — « 2 », значит, перед вами квадратное уравнение.
Примеры квадратных уравнений
- 5x 2 − 14x + 17 = 0
- −x 2 + x +
Чтобы найти « a », « b » и « c » нужно сравнить свое уравнение с общим видом квадратного уравнения « ax 2 + bx + c = 0 ».
Давайте потренируемся определять коэффициенты « a », « b » и « c » в квадратных уравнениях.
- a = 5
- b = −14
- с = 17
- a = −7
- b = −13
- с = 8
- a = −1
- b = 1
- с =
- a = 1
- b = 0,25
- с = 0
- a = 1
- b = 0
- с = −8
Как решать квадратные уравнения
В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней.
Чтобы решить квадратное уравнение нужно:
- привести квадратное уравнение к общему виду « ax 2 + bx + c = 0 ». То есть в правой части должен остаться только « 0 »;
- использовать формулу для корней:
Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.
Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду « ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения.
Определим коэффициенты « a », « b » и « c » для этого уравнения.
- a = 1
- b = −3
- с = −4
Подставим их в формулу и найдем корни.
Обязательно выучите наизусть формулу для нахождения корней.
С её помощью решается любое квадратное уравнение.
Рассмотрим другой пример квадратного уравнения.
В данном виде определить коэффициенты « a », « b » и « c » довольно сложно. Давайте вначале приведем уравнение к общему виду « ax 2 + bx + c = 0 ».
Теперь можно использовать формулу для корней.
Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.
Мы помним из определения квадратного корня о том, что извлекать квадратный корень из отрицательного числа нельзя .
Рассмотрим пример квадратного уравнения, у которого нет корней.
Итак, мы получили ситуацию, когда под корнем стоит отрицательное число. Это означает, что в уравнении нет корней. Поэтому в ответ мы так и записали «Нет действительных корней».
Что означают слова «нет действительных корней»? Почему нельзя просто написать «нет корней»?
На самом деле корни в таких случаях есть, но в рамках школьной программы они не проходятся, поэтому и в ответ мы записываем, что среди действительных чисел корней нет. Другими словами «Нет действительных корней».
Неполные квадратные уравнения
Иногда встречаются квадратные уравнения, в которых отсутсвуют в явном виде коэффициенты « b » и/или « c ». Как например, в таком уравнении:
Такие уравнения называют неполными квадратными уравнениями. Как их решать рассмотрено в уроке «Неполные квадратные уравнения».
Решение квадратных уравнений
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.
Дискриминант
Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4 ac .
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x 2 − 8 x + 12 = 0;
- 5 x 2 + 3 x + 7 = 0;
- x 2 − 6 x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16
Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.
Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.
Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Основная формула корней квадратного уравнения
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D
Задача. Решить квадратные уравнения:
- x 2 − 2 x − 3 = 0;
- 15 − 2 x − x 2 = 0;
- x 2 + 12 x + 36 = 0.
Первое уравнение:
x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.
D > 0 ⇒ уравнение имеет два корня. Найдем их:
Второе уравнение:
15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.
D > 0 ⇒ уравнение снова имеет два корня. Найдем их
Наконец, третье уравнение:
x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.
D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:
Решение неполного квадратного уравнения
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
- Если же (− c / a ) 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Вынесение общего множителя за скобку
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x 2 − 7 x = 0;
- 5 x 2 + 30 = 0;
- 4 x 2 − 9 = 0.
x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.
5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.
Корни квадратного уравнения
Основные формулы
Рассмотрим квадратное уравнение:
(1) .
Корни квадратного уравнения (1) определяются по формулам:
; .
Эти формулы можно объединить так:
.
Когда корни квадратного уравнения известны, то многочлен второй степени можно представить в виде произведения сомножителей (разложить на множители):
.
Далее считаем, что – действительные числа.
Рассмотрим дискриминант квадратного уравнения:
.
Если дискриминант положителен, , то квадратное уравнение (1) имеет два различных действительных корня:
; .
Тогда разложение квадратного трехчлена на множители имеет вид:
.
Если дискриминант равен нулю, , то квадратное уравнение (1) имеет два кратных (равных) действительных корня:
.
Разложение на множители:
.
Если дискриминант отрицателен, , то квадратное уравнение (1) имеет два комплексно сопряженных корня:
;
.
Здесь – мнимая единица, ;
и – действительная и мнимая части корней:
; .
Тогда
Графическая интерпретация
Если построить график функции
,
который является параболой, то точки пересечения графика с осью будут корнями уравнения
.
При , график пересекает ось абсцисс (ось ) в двух точках (см. рисунок ⇓).
При , график касается оси абсцисс в одной точке (см. рисунок ⇓).
При , график не пересекает ось абсцисс (см. рисунок ⇓).
Полезные формулы, связанные с квадратным уравнением
Вывод формулы для корней квадратного уравнения
Выполняем преобразования и применяем формулы (f.1) и (f.3):
Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение
выполняется при
и .
То есть и являются корнями квадратного уравнения
.
Примеры определения корней квадратного уравнения
Пример 1
Найти корни квадратного уравнения:
(1.1) .
Запишем квадратное уравнение в общем виде:
.
Сравнивая с нашим уравнением (1.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант положителен, , то уравнение имеет два действительных корня:
;
;
.
Отсюда получаем разложение квадратного трехчлена на множители:
График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.
Построим график функции
.
График этой функции является параболой. Она пересевает ось абсцисс (ось ) в двух точках:
и .
Эти точки являются корнями исходного уравнения (1.1).
Пример 2
Найти корни квадратного уравнения:
(2.1) .
Запишем квадратное уравнение в общем виде:
.
Сравнивая с исходным уравнением (2.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант равен нулю, , то уравнение имеет два кратных (равных) корня:
;
.
Тогда разложение трехчлена на множители имеет вид:
.
График функции y = x 2 – 4 x + 4 касается оси абсцисс в одной точке.
Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.
Пример 3
Найти корни квадратного уравнения:
(3.1) .
Запишем квадратное уравнение в общем виде:
(1) .
Перепишем исходное уравнение (3.1):
.
Сравнивая с (1), находим значения коэффициентов:
.
Находим дискриминант:
.
Дискриминант отрицателен, . Поэтому действительных корней нет.
Можно найти комплексные корни:
;
;
.
График функции не пересекает ось абсцисс. Действительных корней нет.
Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.
Действительных корней нет. Корни комплексные:
;
;
.
Автор: Олег Одинцов . Опубликовано: 19-04-2016
Источники:
http://math-prosto.ru/?page=pages/quadratic_equations/how_to_solve_quadratic_equation.php
http://www.berdov.com/docs/equation/quadratic_equations/
http://1cov-edu.ru/mat_analiz/funktsii/ratsionalnye/mnogochleny/kvadratnye-uravneniya/