0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какой характерной особенностью обладают полупроводники

Какими особенностями обладают полупроводники

Ответ

300 К), являющиеся основой для созданияполупроводниковых приборов . Удельная электрическая проводимость σ при 300 К составляет 10 -4−10

10 Ом −1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

2) В больших масштабах используют полупроводниковые материалы для изготовления «силовых» полупроводниковых приборов (вентили, тиристоры, мощные транзисторы)

В книжной версии

Том 27. Москва, 2015, стр. 5

Скопировать библиографическую ссылку:

ПОЛУПРОВОДНИКИ́, ве­ще­ст­ва, ха­рак­те­ри­зую­щие­ся элек­трич. про­во­ди­мо­стью $σ$ , про­ме­жу­точ­ной ме­ж­ду про­во­ди­мо­стью хо­ро­ших про­вод­ни­ков, напр. ме­тал­лов ( $σ≈10^4-10^6$ Ом –1 ·см –1 ), и хо­ро­ших ди­элек­три­ков ( $σ≈10^ -10^ $ Ом –1 ·см –1 ) (про­во­ди­мость ука­за­на при ком­нат­ной темп-ре). Ха­рак­тер­ной осо­бен­но­стью П. яв­ля­ет­ся силь­ная за­ви­си­мость их про­во­ди­мо­сти от темп-ры, при­чём в дос­та­точ­но ши­ро­ком ин­тер­ва­ле темпе­ра­тур про­во­ди­мость П., в от­ли­чие от ме­тал­лов, экс­по­нен­ци­аль­но уве­ли­чи­ва­ет­ся с рос­том темп-ры $T$ : $$σ=σ_0exp(–ℰ_a/kT). ag $$ Здесь $k$ – по­сто­ян­ная Больц­ма­на, $ℰ_a$ – энер­гия ак­ти­ва­ции элек­тро­нов в П., ко­то­рая мо­жет ме­нять­ся от не­сколь­ких мэВ до не­сколь­ких эВ, $σ_0$ – ко­эф. про­пор­цио­наль­но­сти, ко­то­рый так­же за­ви­сит от темп-ры, но эта за­ви­си­мость бо­лее сла­бая, чем экс­по­нен­ци­аль­ная. С по­вы­ше­ни­ем темп-ры те­п­ло­вое дви­же­ние раз­ры­ва­ет часть хи­мич. свя­зей в ато­мах П. и элек­тро­ны, чис­ло ко­то­рых про­пор­цио­наль­но $exp(–ℰ_a/kT)$ , ста­но­вят­ся сво­бод­ны­ми и уча­ст­ву­ют в элек­трич. про­во­ди­мо­сти. Энер­гия, не­об­хо­ди­мая для то­го, что­бы ра­зо­рвать хи­мич. связь и сде­лать ва­лент­ный элек­трон сво­бод­ным, на­зы­ва­ет­ся энер­ги­ей ак­ти­ва­ции.

Полупроводники как вещества, занимающие по величине удельной электрической проводимости промежуточное положение между металлами и диэлектриками: знакомство с видами, общая характеристика структуры. Анализ схемы энергетических состояний электронов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

полупроводник энергетический металл

Виды полупроводников. К полупроводникам относятся вещества, занимающие по величине удельной электрической проводимости промежуточное положение между проводниками (металлами) и диэлектриками. Значения удельной электрической проводимости этих трех классов веществ приведены в табл. 1.1.

Таблица 1.1 Электропроводность веществ

Основным признаком, выделяющим полупроводники как особый класс веществ, является сильное влияние температуры и концентрации примесей на их электрическую проводимость. Так, например, даже при сравнительно небольшом повышении температуры проводимость полупроводников резко возрастает (до 5—6% на 1 0 С). Проводимость же металлов с ростом температуры не увеличивается, а падает очень незначительно: изменение составляет десятые доли процента на 1 0 С. Введение примеси в полупроводник в количестве 10- 7 —10- 9 % уже существенно увеличивает его проводимость.

У большинства полупроводников сильное изменение электрической проводимости возникает под действием света, ионизирующих излучений и других энергетических воздействий. Таким образом, полупроводник — это вещество, удельная проводимость которого существенно зависит от внешних факторов.

Полупроводники представляют собой наиболее многочисленный класс веществ. К ним относятся химические элементы: бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, серое олово, теллур, йод, химические соединения CuCl, CaAs, GeSi, CuO, PbS и др., большинство минералов — природных химических соединений, число которых доходит до 2000, и многие органические вещества.

В электронике находит применение лишь ограниченное число полупроводниковых веществ. На первом месте среди них стоят германий, кремний, арсенид галлия, используемые в качестве основы при изготовлении полупроводниковых приборов. Бор, фосфор, мышьяк и некоторые другие вещества используют в качестве примесей.

Структура полупроводников. Применяемые в электронике полупроводники имеют монокристаллическую структуру. Это означает, что по всему объему такого вещества атомы размещены в строго периодической последовательности на определенных постоянных расстояниях друг от друга, образуя так называемую кристаллическую решетку. У германия и кремния кристаллическая решетка такая же, как у алмаза (рис. 1.1): каждый атом («шарик» на рисунке) окружен четырьмя атомами, находящимися в вершинах правильного тетраэдра. В 1 см 3 германия содержится 4,4·10 22 атомов, кремния — 5·10 22 атомов.

Каждый атом кристаллической решетки электрически нейтрален, но существуют силы, удерживающие атомы в узлах решетки; они возникают за счет валентных электронов. Подобную связь называют ковалентной, для ее создания необходима пара валентных электронов. На рисунке связи условно показаны в виде стержней.

Сущность ковалентной связи можно пояснить на примере объединения двух атомов водорода (рис. 1.2, а) в молекулу. При этом два валентных электрона образуют общую электронную оболочку молекулы (рис. 1.2, 6) и силы притяжения к ним протонов уравновешиваются силами взаимного их отталкивания. При увеличения расстояния между протонами, входящими в молекулу, возникают силы притяжения, а при уменьшении — силы отталкивания. Равновесное состояние системы частиц соответствует минимуму потенциальной энергии и является устойчивым, так как для разрушения молекулы необходима затрата энергии.

В германии и кремнии, являющихся четырехвалентными элементами, на наружной оболочке имеется по четыре валентных электрона, поэтому каждый атом образует четыре ковалентных связи с четырьмя ближайшими от него атомами.

Виды зарядов. В рассмотренной идеальной кристаллической решетке все электроны связаны со своими атомами, поэтому такая структура не проводит электрический ток. Однако в полупроводниках (что коренным образом отличает их от диэлектриков) сравнительно небольшие энергетические воздействия, обусловленные нагревом или облучением, могут привести к отрыву некоторых электронов от своих атомов. Такие освобожденные от валентной связи электроны обладают способностью перемещаться по кристаллической решетке, их называют электронами проводимости.

В квантовой механике показывается, что энергетические состояния электронов проводимости образуют целую зону значений (уровней) энергии, называемую зоной проводимости. В интервале значений энергий от W до W+dW число энергетических уровней, на которых могут находиться электроны проводимости, равно [1]

где тп — эффективная масса электрона проводимости (в германии и кремнии, например, она составляет 0,22 — 0,33 от массы покоя соответственно);

Читать еще:  Как определить витковое замыкание в трансформаторе

Wc — минимальный уровень энергии электрона (дно) зоны проводимости;

h = 6,62?10 -34 Дж с — постоянная Планка.

В соответствии с принципом Паули в одном и том же энергетическом состоянии могут находиться лишь два электрона, имеющих при этом различные спины.

Энергетические состояния валентных электронов также образуют зону уровней энергии, называемую валентной. Максимальный уровень энергии (потолок) этой зоны обозначим Wv (рис. 1.3 ,a).

При разрыве валентной связи и уходе электрона из атома в кристаллической решетке образуется незаполненная связь (дырка), которой присущ нескомпенсированный положительный заряд, равный по величине заряду электрона е. Поскольку на незаполненную связь легко переходят валентные электроны с соседних связей, чему способствует тепловое движение в кристалле, место, где отсутствует валентный электрон, хаотически перемещается по решетке. При наличии внешнего электрического поля дырка будет двигаться в направлении, определенном вектором напряженности поля, что соответствует переносу положительного заряда, т. е. возникает электрический ток.

Между максимальным уровнем энергии валентной зоны Wv и минимальным уровнем энергии зоны проводимости Wс лежит область энергетических состояний, в которой электроны не могут находиться; это так называемая запрещенная зона (рис. 1.3, а). Ширина запрещенной зоны ?W= Wc — Wv определяет минимальную энергию, необходимую для освобождения валентного электрона, т. е. энергию ионизации атома полупроводника. У германия ?W = 0,72 эВ, у кремния ?W = 1,12эВ, у арсенида галлия ?W =1,41 эВ, следовательно, ширина запрещенной зоны зависит от структуры кристаллической решетки и вида вещества.

Схему энергетических состояний электронов, изображенную на рис. 1.3, называют энергетической диаграммой полупроводника.

Собственные и примесные полупроводники. Полупроводник, имеющий в узлах кристаллической решетки только свои атомы, называют собственным полупроводником; все величины, относящиеся к нему, обозначают индексом i (от англ, intrinsic — присущий). В электронике часто применяют полупроводники, у которых часть атомов основного вещества в узлах кристаллической решетки замещена атомами другого вещества; такие полупроводники называют примесными.

Для германия и кремния чаще всего используют пятивалентные (фосфор,

сурьма, мышьяк) и трехвалентные (бор, алюминий, индий, галлий) примеси.

При наличии пятивалентной примеси четыре валентных электрона примесного атома совместно с четырьмя электронами соседних атомов образуют ковалентные связи, а пятый валентный электрон оказывается «лишним». Энергия связи его со своим атомом ?Wп намного меньше энергии ?W, необходимой для освобождения валентного электрона (табл. 1.2).

Значения энергии ионизации пятивалентных примесей в германии и кремнии

§ 31. Проводники, полупроводники и непроводники электричества

При изучении тепловых явлений говорилось, что по способности проводить теплоту вещества делятся на хорошие и плохие проводники тепла.

По способности передавать электрические заряды вещества также делятся на несколько классов: проводники, полупроводники и непроводники электричества.

Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному.

Хорошие проводники электричества — это металлы, почва, вода с растворёнными в ней солями, кислотами или щелочами, графит. Тело человека также проводит электричество. Это можно обнаружить на опыте. Дотронемся до заряженного электроскопа рукой. Листочки тотчас опустятся. Заряд с электроскопа уходит по нашему телу через пол комнаты в землю.

Проводники электричества:
а — железо; б — графит

Из металлов лучшие проводники электричества — серебро, медь, алюминий.

Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному.

Непроводниками электричества, или диэлектриками, являются эбонит, янтарь, фарфор, резина, различные пластмассы, шёлк, капрон, масла, воздух (газы). Изготовленные из диэлектриков тела называют изоляторами (от итал. изоляро — уединять).

Непроводники электричества:
а — янтарь; б — фарфор

Полупроводниками называют тела, которые по способности передавать электрические заряды занимают промежуточное положение между проводниками и диэлектриками.

В природе полупроводники распространены достаточно широко. Это оксиды и сульфиды металлов, некоторые органические вещества и др. Наибольшее применение в технике нашли германий и кремний.

Полупроводники при низкой температуре не проводят электрический ток и являются диэлектриками. Однако при повышении температуры в полупроводнике начинает резко увеличиваться число носителей электрического заряда, и он становится проводником.

Почему это происходит? У полупроводников, таких как кремний и германий, в узлах кристаллической решётки атомы колеблются около своих положений равновесия, и уже при температуре 20 °С это движение становится настолько интенсивным, что химические связи между соседними атомами могут разорваться. При дальнейшем повышении температуры валентные электроны (электроны, находящиеся на внешней оболочке атома) атомов полупроводников становятся свободными, и под действием электрического поля в полупроводнике возникает электрический ток.

Характерной особенностью полупроводников является возрастание их проводимости с повышением температуры. У металлов же при повышении температуры проводимость уменьшается.

Способность полупроводников проводить электрический ток возникает также при воздействии на них света, потока быстрых частиц, введении примесей и др.

Полупроводники:
а — германий; б— кремний

Изменение электропроводности полупроводников под действием температуры позволило применять их в качестве термометров для замера температуры окружающей среды, широко применяют в технике. С его помощью контролируют и поддерживают температуру на определённом уровне.

Повышение электропроводности вещества под воздействием света носит название фотопроводимость. Основанные на этом явлении приборы называют фотосопротивлениями. Фотосопротивления применяются для сигнализации и в управлении производственными процессами на расстоянии, сортировке изделий. С их помощью в экстренных ситуациях автоматически останавливаются станки и конвейеры, предупреждая несчастные случаи.

Благодаря удивительным свойствам полупроводников, они широко используются при создании транзисторов, тиристоров, полупроводниковых диодов, фоторезисторов и другой сложнейшей аппаратуры. Применение интегральных микросхем в теле-, радио- и компьютерных приборах позволяет создавать устройства небольших, а порой и ничтожно малых размеров.

Вопросы

  1. На какие группы делят вещества по способности передавать электрические заряды?
  2. Какой характерной особенностью обладают полупроводники?
  3. Перечислите области применения полупроводниковых приборов.
Читать еще:  Как выглядеть взрослее

Упражнение 22

  1. Почему заряженный электроскоп разряжается, если его шарика коснуться рукой?
  2. Почему стержень электроскопа изготавливают из металла?
  3. К шарику незаряженного электроскопа подносят тело, заряженное положительно, не касаясь его. Какой заряд возникнет на листочках электроскопа?

Это любопытно.

Способность тела к электризации определяется наличием свободных зарядов. В полупроводниках концентрация носителей свободного заряда увеличивается с ростом температуры.

Проводимость, которая осуществляется свободными электронами (рис. 43), называется электронной проводимостью полупроводника или проводимостью n-типа (от лат. negativus — отрицательный). При отрыве электронов от атомов германия в местах разрыва образуются свободные места, которые не заняты электронами. Эти вакансии получили название «дырки». В области образования дырки возникает избыточный положительный заряд. Вакантное место может быть занято другим электроном.

Электрон, перемещаясь в полупроводнике, создаёт возможность заполнения одних дырок и образования других. Возникновение новой дырки сопровождается появлением свободного электрона, т. е. идёт непрерывное образование пар электрон — дырка. В свою очередь, заполнение дырок приводит к уменьшению числа свободных электронов. Если кристалл поместить в электрическое поле, то будет происходить перемещение не только электронов, но и дырок. Направление перемещения дырок противоположно направлению движения электронов.

Проводимость, которая возникает в результате перемещения дырок в полупроводнике, называется дырочной проводимостью или проводимостью р-типа (от лат. positivus — положительный). Полупроводники подразделяют на чистые полупроводники, примесные полупроводники n-типа, примесные полупроводники р-типа.

Чистые полупроводники обладают собственной проводимостью. В создании тока участвуют свободные заряды двух типов: отрицательные (электроны) и положительные (дырки). В чистом полупроводнике концентрация свободных электронов и дырок одинакова.

При введении в полупроводник примесей возникает примесная проводимость. Изменяя концентрацию примеси, можно менять и число носителей заряда того или иного знака, т. е. создавать полупроводники с преимущественной концентрацией отрицательного или положительного заряда. Примесные полупроводники n-типа обладают электронной проводимостью. Основными носителями заряда являются электроны, а неосновными — дырки.

Примесные полупроводники р-типа обладают дырочной проводимостью. Основными носителями заряда являются дырки, а неосновными — электроны.

Полупроводниковый диод представляет собой соединение полупроводников р- и л-типа. Сопротивление области контакта зависит от направления тока. Если диод включить в цепь, чтобы область кристалла с электронной проводимостью n-типа была подсоединена к положительному полюсу, а область с дырочной проводимостью р-типа к отрицательному полюсу, то тока в цепи не будет, так как переход электронов из n-области в р-область затрудняется.

Если р-область полупроводника подключить к положительному полюсу, а n-область к отрицательному, то в этом случае ток проходит через диод. За счёт диффузии основных носителей тока в чужой полупроводник в области контакта образуется двойной электрический слой, препятствующий движению зарядов. Внешнее поле, направленное от р к n, частично компенсирует действие этого слоя, и при увеличении напряжения ток быстро возрастает.

Полупроводники – что это такое

Полупроводники это вещества, которые обладают промежуточными свойствами проводников и диэлектриков в отношении удельной проводимости. Сопротивление полупроводников характеризуется следующими особенностями:

  • Сильная выраженная зависимость от количества и состава примесей в веществе;
  • Повышение температуры вызывает уменьшение сопротивления.

Важно! При температуре, стремящейся к абсолютному нулю, все полупроводники становятся диэлектриками.

Механизм электрической проводимости

Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.

Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.

Дырка

Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.

Обратите внимание! Подвижность электронов выше, чем у дырок.

Энергетические зоны

Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:

  • Зона проводимости;
  • Запрещенная зона;
  • Зона валентности.

Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.

Подвижность

При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.

Собственная плотность

Наличие запрещенной зоны не служит препятствием к образованию собственных носителей заряда. Плотность электронов и дырок определяется сложной зависимостью, которая показывает, что собственная плотность заряженных частиц растет при увеличении температуры.

Виды полупроводников

Множество веществ, к которым можно отнести полупроводники, классифицируется по величине и характеру проводимости.

По характеру проводимости

В силу того, используется чистое вещество либо, в которое внесены примеси, проводимость может иметь различный характер.

Собственная проводимость

В силу разных причин в чистых материалах могут появляться свободные электроны и дырки. В результате образуется собственная проводимость.

Важно! Собственная проводимость характеризуется равной концентрацией дырок и электронов.

Примесная проводимость

Большая часть полупроводников, образованных четырехвалентными атомами, имеет собственную проводимость. При целенаправленном внесении примесей веществ третьей или пятой валентности получаются кристаллы, обладающие примесной проводимостью, в которых количество дырок и электронов прямо зависит от типа и количества примесных атомов на единицу объема чистого вещества.

По виду проводимости

Выше было рассмотрено, что в полупроводниках в процессе переноса заряда участвуют не только «традиционные» электроны, но и условные положительные заряды – дырки. Поэтому полупроводниковые материалы имеют два типа проводимости.

Читать еще:  По какому признаку мы узнаем мораль

Электронные полупроводники (n-типа)

Присутствие в четырехвалентном веществе пятивалентной примеси приводит к тому, что пятый электрон примеси вынужден переместиться на более высокую орбиту, в результате чего на его освобождение требуется небольшое количество энергии.

Такие примесные полупроводники называют веществами n-типа, от слова «negative» – отрицательный. Примеси в данном случае называют донорными, так как они способствуют появлению в веществе свободных электронов.

Дырочные полупроводники (р-типа)

При добавлении трехвалентной примеси возникает противоположная ситуация, когда в кристаллической решетке четырехвалентного материала примесь забирает недостающий электрон, а в основном веществе образуется дырка. Такие примеси именуют акцепторными, а примесный полупроводник, соответственно, называется p-типа, поскольку «positive» – положительный.

Использование в радиотехнике

Каждый специалист, техник, обладающий познаниями в электронике, знает, что абсолютно вся современная электроника основана на применении полупроводниковых элементов. Любой аналоговый или цифровой (дискретный) прибор имеет в своей основе схемы, построенные с применением диодов и транзисторов.

Полупроводниковый диод

Одно из первых устройств, использующих свойства полупроводимости, – это полупроводниковый диод. Конструкция заключается в соединении пары полупроводников с разными типами проводимости.

В результате физических процессов движения электронов и дырок на границе веществ возникает электрическое поле, и образуется так называемый p-n переход.

P-n переход обладает свойством односторонней проводимости, то есть ток через диод возникает только при подключении p-области (анода) к полюсу источника напряжения, а n-области (катода) – к минусу.

В обратной полярности ток также имеется, но его величина, по сравнению с прямым, намного меньше. Стабилитрон – вид диода, основная область его работы находится на обратной ветви характеристики. Параметр p-n перехода подобран таким образом, что в узкой области обратного тока напряжение на стабилитроне практически не меняется.

Первый диод – детектор, использовался еще в то время, когда теория полупроводников находилась в зачаточном состоянии.

Транзистор

Транзистор, или, как раннее его называли, триод, имеет две области из материала с одинаковой проводимостью и тонкую область полупроводника с другой. Принцип работы транзистора заключается в том, что малый ток в тонкой области, называемой базой, может управлять гораздо большим током через другие области, соответственно, коллектор и эмиттер.

В зависимости от схемы включения, транзистор может иметь различное назначение: как усилительный, генераторный и преобразовательный полупроводниковый элемент.

Применение полупроводников не ограничивается вышеперечисленными областями. Существуют изделия с тремя и более p-n переходами или вообще без них. Варистор – резистор с сопротивлением, зависящим от величины протекающего тока, тоже полупроводниковый элемент.

Типы полупроводников в периодической системе элементов

В периодической таблице химэлементов полупроводники сосредоточены в периодах со 2-го по 6-й. Их делят на такие типы:

  • Одноэлементные. Собственный полупроводник обычно принадлежит IV группе, реже используются элементы из других групп;
  • Сложные – двух и более элементные.

Обратите внимание! Свойства полупроводниковых материалов характеризуются тем, что при увеличении номера группы ширина запрещенной зоны уменьшается.

Физические свойства и применение

Сильная зависимость собственной проводимости от значения температуры является основным физическим свойством полупроводников. Главным образом это выражается тем, что при температуре, близкой к абсолютному нулю, наблюдается полное отсутствие свободных носителей.

Некоторые вещества обладают оптическими свойствами. К примеру, простой чистый кремний используется в производстве солнечных батарей, сложные соединения, в особенности, арсенид галлия, применяются для изготовления светодиодов. Полупроводниковый лазер имеет малые габариты и высокие технические параметры, что позволило воплотить в жизнь оптоволоконные средства коммуникации.

Легирование

Характеристика полупроводника в сильной степени зависит от его чистоты. Выращивая в особых условиях сверхчистые монокристаллы вещества, необходимые свойства придают при помощи легирования (введения в состав донорных или акцепторных примесей).

Методы получения

Для выращивания монокристаллов высокой чистоты используют два метода:

  • Метод Чохральского, при котором монокристалл выращивают из расплава вещества;
  • Зонная плавка, когда очистка образца производится путем расплавления небольшого участка с постепенным продвижением зоны расплава подвижной индукционной катушкой.

Также физики используют методики химического и физического осаждения, которые позволяют создавать тонкие слои вещества вплоть до слоев в одну молекулу толщиной.

Оптика полупроводников

Многие полупроводники обладают оптическими свойствами, в частности, фотопроводимостью, то есть свойством изменения электрического сопротивления под воздействием электромагнитного излучения.

В оптоэлектронике наиболее часто используются такие материалы, которые поглощают излучение в том случае, когда ширина запрещенной зоны меньше энергии кванта. Основной материал оптоэлектроники – арсенид галлия.

Список полупроводников

Полупроводники примеры которых будут рассмотрены ниже, нашли самое широкое распространение. Группы обозначаются буквами с указанием валентности. Первый материал обозначается буквой «А», второй – буквой «В». Для упрощения буквенные символы иногда опускают, оставляя только валентное число. Далее приведен краткий перечень распространенных материалов.

Группа IV

  • Германий;
  • Кремний;
  • Карбид кремния.

Группа III-V

Арсенид, фосфид, нитрид индия и галлия. Также сюда входит трехкомпонентный полупроводник арсенид галлия-индия.

Группа II-VI

Селенид, сульфид, теллурид цинка и кадмия.

Группа I-VII

Единственное вещество – хлорид мели.

Группа IV-VI

Сульфид, теллурид свинца и олова.

Группа V-VI

Группа II-V

  • Фосфид цинка;
  • Антимонид олова.

Другие

  • Сульфид олова;
  • Оксид меди;
  • Железный оксид.

Органические полупроводники

Некоторые органические соединения также обладают полупроводниковыми свойствами:

  • Органические красители;
  • Ароматические соединения;
  • Полимеры;
  • Пигменты.

Магнитные полупроводники

Некоторые полупроводниковые материалы обладают свойствами ферромагнетиков, что позволяет создавать устройства с новыми областями применения.

Прошло то время, когда полупроводниковая техника была дорога и нетехнологична, по сравнению с электровакуумным оборудованием. В настоящее время вся электро,- и радиотехника базируется на монолитных полупроводниковых компонентах. Такие устройства имеют высокую надежность и стабильность параметров.

Видео

Источники:

http://moreremonta.info/strojka/kakimi-osobennostjami-obladajut-poluprovodniki/
http://tepka.ru/fizika_8/31.html
http://amperof.ru/teoriya/poluprovodniki-chto-eto-takoe.html

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector