Кто сформулировал основные положения клеточной теории
Кто сформулировал основные положения клеточной теории
История изучения клетки. Клеточная теория
ЦИТОЛОГИЯ-НАУКА О КЛЕТКАХ
Открытие клетки . Первым человеком, увидевшим клетки, был английский учёный Роберт Гук .
В 1663 г., пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell — «келья, ячейка, клетка»).
В 1674 г. голландский мастер Антоний ван Левенгук (1632 — 1723)
с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток.
Появление клеточной теории
Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений и мира животных, в котором клетка рассматривается в качестве общего структурного элемента растительных и животных организмов.
Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века. Она предоставила базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн
сформулировали клеточную теорию , основываясь на множестве исследований о клетке (1838 – 1839).
Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что она является основной единицей любого организма. Клетки животных, растений и бактерий имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.
Развитие клеточной теории связано с открытием протоплазмы и клеточного деления. К середине XIX в. выяснилось, что главным в клетке является её «содержимое» — протоплазма . В 1858 г. немецкий патолог Р. Вирхов опубликовал «Целлюлярную патологию», в которой распространил клеточную теорию на явления патологии и обратил внимание на ведущее значение ядра в клетке, провозгласив принцип образования клеток путём деления («Оmnis cellula ex cellula» – «Каждая клетка из клетки»). Деление вначале трактовалось как перешнуровка ядра и клеточного тела. В 70 — 80-х гг. был открыт митоз как универсальный способ клеточного деления, типичный для всех клеточных организмов. В конце XIX в. были открыты клеточные органоиды, и клетку перестали рассматривать как простой комочек протоплазмы.
Основные положения теории Шлейдена и Швана:
- Все животные и растения состоят из клеток.
- Клетка является наименьшей единицей живого организма.
- Рост растений и животных осуществляется за счет образования новых клеток.
Основные положения современной клеточной теории
- Клетка – элементарная структурная и функциональная единица живых организмов. Все живые организмы (за исключением вирусов) состоят из клеток.
- Клеточное строение имеют животные, грибы, растения и все прокариоты. Вирусы – это неклеточные формы жизни.
- Клетка является элементарной живой системой, для которой характерны такие признаки живого, как обмен веществ и энергии, рост и развитие, раздражимость, самовоспроизведение.
Клетки всех живых организмов сходны по строению, химическому составу и функционированию.
- Клетки всех клеточных организмов имеют общий план строения – снаружи они ограничены мембраной, содержимое клетки составляют цитоплазма и органоиды, в клетке содержится наследственный материал – в ядре у эукариот и непосредственно в цитоплазме у прокариот.
- Набор химических веществ, входящих в состав клеток, также в основном одинаков у всех организмов. Обязательные вещества клетки – белки, углеводы, липиды, нуклеиновые кислоты.
Новые клетки образуются в результате деления исходной клетки.
- Универсальным способом деления клеток эукариот является митоз. При митозе происходит точное распределение генетического материала по дочерним клеткам. Генетически дочерние клетки полностью идентичны материнской.
- При образовании половых клеток животных и спор растений имеет место редукционное деление – мейоз, при котором число хромосом в дочерних клетках уменьшается вдвое по сравнению с материнской.
- Клетки прокариот также размножаются делением.
Клетки многоклеточных организмов дифференцируются в зависимости от выполняемых ими функций. Группы клеток, сходных по строению и выполняемым функциям, образуют ткани.
- В состав многоклеточного организма входит от нескольких единиц до нескольких десятков типов клеток, составляющих различные ткани и органы.
- Генетический материал всех этих клеток одинаков. В зависимости от функции клетки в работу включаются определенные гены, определяющие строение и функционирование клетки.
Клетки прокариот и простейших обладают всеми свойствами живых систем.
Клеточная теория — основополагающая биологическая теория, утверждающая единство принципа строения и развития всех живых организмов на Земле, в которой в качестве общего структурно-функционального элемента рассматривается клетка.
Методы изучения клетки
Все современные методы изучения клетки можно классифицировать следующим образом:
- Световая, электронная микроскопия. Современный световой микроскоп увеличивает объекты в 3000 раз и позволяет увидеть наиболее крупные органоиды клетки, наблюдать движение цитоплазмы, деление клетки. Электронный микроскоп даёт увеличение в сотни тысяч раз, что позволяет изучить тонкое строение органоидов.
Кто сформулировал основные положения клеточной теории
Раздел ЕГЭ: 2.1. Современная клеточная теория, её основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. …
Клетка — основная структурно-функциональная единица всех живых организмов, наименьшая живая система. Именно на уровне клетки проявляются все свойства жизни. Она может существовать как отдельный организм (бактерии, одноклеточные растения, животные и грибы) или же входить в состав тканей многоклеточных организмов.
Научная теория представляет собой обобщение научных данных об объекте исследования. Это в полной мере касается клеточной теории, созданной двумя немецкими исследователями М. Шлейденом и Т. Шванном в 1839 г.
Развитие знаний о клетке.
В начале XIX в. ботаник М. Шлейден, обобщив наблюдения своих предшественников, пришёл к выводу, что все растения состоят из клеток. Зоолог Т. Шванн обнаружил сходство растительных и животных клеток и в 1839 г. сформулировал клеточную теорию.
В основу клеточной теории легли работы многих исследователей, искавших элементарную структурную единицу живого. Созданию и развитию клеточной теории способствовало возникновение в XVI в. и дальнейшее развитие микроскопии.
Вот основные события, которые стали предшественниками создания клеточной теории:
— 1590 г. — создание первого микроскопа (братья Янсен);
— 1665 г. Роберт Гук — первое описание микроскопической структуры пробки ветки бузины (на самом деле это были клеточные стенки, но Гук ввел название «клетка»);
— 1695 г. — публикация Антония Левенгука о микробах и других микроскопических организмах, увиденных им в микроскоп;
— 1833 г. Р. Броун описал ядро растительной клетки;
— 1839 г. М. Шлейден и Т. Шванн открыли ядрышко.
Клеточная теория развивалась благодаря новым открытиям. В 1880 г. Уолтер Флемминг описал хромосомы и процессы, происходящие в митозе. С 1903 г. стала развиваться генетика. Начиная с 1930 г. стала бурно развиваться электронная микроскопия, что позволило ученым изучать тончайшее строение клеточных структур. XX век стал веком расцвета биологии и таких наук, как цитология, генетика, эмбриология, биохимия, биофизика. Без создания клеточной теории это развитие было бы невозможным.
Основные положения современной клеточной теории:
1. Все простые и сложные организмы состоят из клеток, способных к обмену с окружающей средой веществами, энергией, биологической информацией.
2. Клетка — элементарная структурная, функциональная и генетическая единица живого.
3. Клетка — элементарная единица размножения и развития живого.
4. В многоклеточных организмах клетки дифференцированы по строению и функциям. Они объединены в ткани, органы и системы органов.
5. Клетка представляет собой элементарную, открытую живую систему, способную к саморегуляции, самообновлению и воспроизведению.
Будучи во многом несовершенной, тем не менее клеточная теория доказала единство живой природы и дала мощный толчок к дальнейшим исследованиям и развитию цитологии как самостоятельной биологической науки. На нынешнем этапе наши знания о клетке обширны, но не всегда достаточны для понимания механизмов её функционирования.
Это конспект по теме «Современная клеточная теория». Выберите дальнейшие действия:
Кто сформулировал основные положения клеточной теории
История изучения клетки. Клеточная теория
Открытие клетки . Первым человеком, увидевшим клетки, был английский учёный Роберт Гук. В 1663 г., пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell — «келья, ячейка, клетка»).
В 1674 г. голландский мастер Антоний ван Левенгук (1632 — 1723) с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток.
Появление клеточной теории
Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений и мира животных, в котором клетка рассматривается в качестве общего структурного элемента растительных и животных организмов.
Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века. Она предоставила базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию , основываясь на множестве исследований о клетке (1838 – 1839).
Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что она является основной единицей любого организма. Клетки животных, растений и бактерий имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.
Развитие клеточной теории связано с открытием протоплазмы и клеточного деления. К середине XIX в. выяснилось, что главным в клетке является её «содержимое» — протоплазма . В 1858 г. немецкий патолог Р. Вирхов опубликовал «Целлюлярную патологию», в которой распространил клеточную теорию на явления патологии и обратил внимание на ведущее значение ядра в клетке, провозгласив принцип образования клеток путём деления («Оmnis cellula ex cellula » – « Каждая клетка из клетки»). Деление вначале трактовалось как перешнуровка ядра и клеточного тела. В 70 — 80-х гг. был открыт митоз как универсальный способ клеточного деления, типичный для всех клеточных организмов. В конце XIX в. были открыты клеточные органоиды, и клетку перестали рассматривать как простой комочек протоплазмы.
Основные положения теории Шлейдена и Швана:
- Все животные и растения состоят из клеток.
- Клетка является наименьшей единицей живого организма.
- Рост растений и животных осуществляется за счет образования новых клеток.
Основные положения современной клеточной теории
- Клетка – элементарная структурная и функциональная единица живых организмов. Все живые организмы (за исключением вирусов) состоят из клеток.
- Клеточное строение имеют животные, грибы, растения и все прокариоты. Вирусы – это неклеточные формы жизни.
- Клетка является элементарной живой системой, для которой характерны такие признаки живого, как обмен веществ и энергии, рост и развитие, раздражимость, самовоспроизведение.
Клетки всех живых организмов сходны по строению, химическому составу и функционированию.
- Клетки всех клеточных организмов имеют общий план строения – снаружи они ограничены мембраной, содержимое клетки составляют цитоплазма и органоиды, в клетке содержится наследственный материал – в ядре у эукариот и непосредственно в цитоплазме у прокариот.
- Набор химических веществ, входящих в состав клеток, также в основном одинаков у всех организмов. Обязательные вещества клетки – белки, углеводы, липиды, нуклеиновые кислоты.
Новые клетки образуются в результате деления исходной клетки.
- Универсальным способом деления клеток эукариот является митоз. При митозе происходит точное распределение генетического материала по дочерним клеткам. Генетически дочерние клетки полностью идентичны материнской.
- При образовании половых клеток животных и спор растений имеет место редукционное деление – мейоз, при котором число хромосом в дочерних клетках уменьшается вдвое по сравнению с материнской.
- Клетки прокариот также размножаются делением.
Клетки многоклеточных организмов дифференцируются в зависимости от выполняемых ими функций. Группы клеток, сходных по строению и выполняемым функциям, образуют ткани.
- В состав многоклеточного организма входит от нескольких единиц до нескольких десятков типов клеток, составляющих различные ткани и органы.
- Генетический материал всех этих клеток одинаков. В зависимости от функции клетки в работу включаются определенные гены, определяющие строение и функционирование клетки.
Клетки прокариот и простейших обладают всеми свойствами живых систем.
Клеточная теория — основополагающая биологическая теория, утверждающая единство принципа строения и развития всех живых организмов на Земле, в которой в качестве общего структурно-функционального элемента рассматривается клетка.
Методы изучения клетки
Прижизненное изучение клеток проводят с помощью светового микроскопа . Объектами такого изучения могут служить свободноживущие простейшие, которых в лаборатории содержат в специальных средах; клетки крови можно изучать в капле плазмы или в специальной синтетической среде; для изучения клеток тканей животного организма используют метод клеточных культур . При культивировании клеток, кроме химического состава среды, необходимо поддерживать определённую температуру. Также обязательным условием является стерильность. Метод культивирования клеток используется не только для цитологических исследований, но и для биохимических, генетических и вирусологических.
При изучении живых клеток используют методы микрохирургии . С помощью микроманипулятора можно вводить внутрь клетки вещества, извлекать части клетки. Так с помощью микроманипулятора удалось пересадить ядро из клетки одной амёбы в клетку другого штамма и доказать, что именно ядро определяет физиологические особенности клетки. Сравнительно недавно стали применять аппараты с лазерным микропучком, что позволяет очень точно дозировать импульсы облучения.
При изучении живых клеток используют различные красители, в том числе способные светиться (флуоресцировать) при поглощении световой энергии. Многие красители избирательно связываются с некоторыми структурами клетки, вызывая их свечение.
Клетка в сканирующем микроскопе (слева). Раковые клетки в конфокальном микроскопе (справа)
Широко используют световую микроскопию с компьютерной обработкой изображений . Например, конфокальный сканирующий световой микроскоп позволяет получить серии последовательных изображений, на основании которых реконструируется объёмное изображение клетки.
Все современные методы изучения клетки можно классифицировать следующим образом:
- Световая, электронная микроскопия. Современный световой микроскоп увеличивает объекты в 3000 раз и позволяет увидеть наиболее крупные органоиды клетки, наблюдать движение цитоплазмы, деление клетки. Электронный микроскоп даёт увеличение в сотни тысяч раз, что позволяет изучить тонкое строение органоидов.
- Фракционирование — ультрацентрифугирование. Метод основан на том, что клеточные органоиды имеют разную массу и плотность. Измельчённые ткани помещают в пробирки и вращают в центрифуге с большой скоростью. Более плотные органоиды осаждаются при низких скоростях вращения, а менее плотные — при высоких. Каждый слой изучается отдельно.
- Рентгеноструктурный анализ. Основан на получении рентгенограмм. Позволяет изучить конфигурацию молекул белка, нуклеиновых кислот для понимания их биологических функций.
- Получение культуры тканей. Даёт возможность исследовать живые клетки, помещённые в соответствующую среду, в которой они способны к автономному росту, формированию тканей и органов организма.
- Окрашивание. Применяется для окрашивания живых клеток красителями для получения контрастного изображения изучаемых структур.
Источники:
http://www.sites.google.com/site/biologiaege/kletocnaa-teoria-himiceskij-sostav-kletki
http://uchitel.pro/%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D1%87%D0%BD%D0%B0%D1%8F-%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F/
http://biolicey2vrn.ru/index/kletochnaja_teorija/0-761